54
2-Topshiriq:Arifmetik ifodalarni C++ algoritmik tilda yozing va dasturini tuzing
Hisobotda quyidagilar bo`lishi kerak:
1) Variantingaz sharti
2) Dastur teksti
3) Hisob natijasi (Monitordan ko`chirib oling)
1-variant
a)
U
xz
b
e
xz
b
x
a
a
x
arctg
log
3
b) Yq
x
x
c
x
x
b
ax
sin
3
2
2
2
cos
2-variant
a) Y
0,5)І
І(xІ
lgcos
xі
x
sin
3
b) T
3
2yІ
xІ
)
(
І
sin
2
kx
e
x
3-variant
a) Z
3
2
2
2
5
2
2
sin
sin
c
b
a
x
b
Ln
x
a
b) T
3
2yІ
xІ
)
(
І
sin
2
kx
e
x
4-variant
a) U
4
3
2
3
3
3
3
2
.
1
lg
1
.
1
lg
sec
1
.
1
x
x
x
x
arctg
b) T
2
2
1
1
1
cos
3
2
abx
x
x
x
5-variant
a)
5
3
2
cos
3
9
.
3
4
.
3
arccos
45
.
0
cos
15
.
2
x
Ln
xe
x
x
Y
x
b)
4
2
2
2
2
cos
sin
2
y
x
x
e
T
x
6-variant
a)
3
3
2
sin
3
2
cos
65
.
0
75
.
0
sin
5
.
2
x
xe
x
tg
x
Y
x
b)
2
2
2
2
3
2
2
cos
z
x
z
x
x
z
e
e
x
z
x
V
7-variant
a)
3
2
2
3
3
2
2
.
1
lg
2
.
1
sec
5
.
1
x
x
tg
x
x
arctg
Y
b)
x
x
c
tgx
b
ax
Z
ln
2
2
2
2
x
x e
b
x
2
8- variant
a)
1
3
3
lg
ln
sin
sin
ln
x
e
x
y
x
Z
b)
3
4
2
)
sin
(cos
x
arctg
x
x
Y
55
9- variant
a)
2
log
3
10
2
2
x
x
e
x
ab
Z
k
kx
Y
2
lg
1
2
1
cos
3
1
2
2
2
3
4
x
t
x
k
x
x
10-variant
x
x
n
x
x
x
Y
lg
sin
1
cos
7
.
2
6
.
1
5
.
1
sin
3
2
2
3
b) T
2
3
5
.
0
1
sin
3
y
x
x
y
x
e
x
11-variant
a)
2
3
2
6
2
3
2
2
ln
cos
sin
x
b
ax
ax
b
x
a
Y
b)
1
1
4
.
1
2
.
1
ln
3
2
x
x
x
x
e
Z
x
12-variant
a)
2
3
3
log
3
2
arccos
x
ax
ax
e
x
Y
a
x
b)
Я
2
Я
log
x
t
e
x
tg
T
13-variant
a)
xz
b
e
xz
b
x
a
a
x
arctg
log
3
b)
b
a
x
ac
b
abx
Z
1
4
3
2
14-variant
a)
)
3
)(
2
(
4
)
(
arccos
2
bx
ax
e
b
x
arctg
x
Y
x
at
b)
ac
b
ac
b
abx
T
4
4
2
3
5
2
15-variant
a)
a
b
ax
t
x
arctgx
e
x
b
x
a
2
2
3
3
cos
1
b)
2
3
cos
1
x
e
-
5
3
x
x
T
x
t
56
16-variant
a) Y
a
x
b
mx
b
a
x
x
e
a
b
a
e
arctg
ab
m
2
2
1
b)
2
0001
.
0
05
.
2
1
10
)
sin(
6
2
x
x
e
y
x
e
xy
Z
17-variant
a)
00002
.
0
log
log
)
(
log
2
2
2
2
x
a
a
a
b
x
tg
b
a
x
arctg
a
x
Y
b
b)
3
5
c os
4
8
10
1
10
x
a
x
n
e
Z
x
18- variant
a)
a
x
tg
b
a
x
arctg
a
x
Z
lg
2
2
b)
003
.
0
2
0003
.
0
2
1
1
x
e
mx
x
g
x
b
a
e
tg
Y
19- variant
a)
1
2
0004
,
0
2
2
2
9
ln
4
r
v
x
x
r
r
v
v
r
Y
b)
2
3
2
3
si n
2
cos
x
x
e
e
x
x
e
Z
x
20- variant
a)
x
x
x
tg
arctgx
e
Y
a
x
cos
1
sin
1
log
2
1
)
(
log
2
2
3
sin
v )
x
ф
ч
arctg
be
a
x
e
Z
ln
)
(
21-variant
a)
2
3
lg
2
3
x
ax
e
a
x
cb
g
ax
arctgx
Y
b)
k
w
tg
t
t
v
k
t
w
x
t
A
cos
2
cos
22-variant
a)
3
2
7
)
(
sin
cos
ab
bx
a
x
ctg
bx
be
x
Y
x
b)
5
3
2
2
3
001
.
0
2
3
arcsin
2
ctg
bc
ax
a
Z
c
a
7- вариант ax_-_b²Tgx²
2x_-_b
a) y = (arctg_²(x³)_+_1,5_Sec_³√x)² b) z = c²x²Lnx
x
xe
Tg(1,2x) + Lg²(1,2 x³)
58
3-Topshiriq:Berilgan uchburchakning ma’lum parametrlariga asoslanib, noma’lum
parametrlarinini topish algoritmi va dasturini tuzing.
Hisobotda quyidagilar bo`lishi kerak:
1) Variantingiz sharti
2) Dastur matni
3) Hisob natijasi (Monitordan ko`chirib oling)
3- topshiriqni bajarishga amaliy ko`rsatma
Ushbu laboratoriya topshirig`ini yechishda kuyidagi ma‘lumotlar foydali bo`ladi:
Ixtiyoriy AVS uchburchak berilgan bo`lsin.
S
A
V
a, b, s - Uchburchakning tomonlari.
ά, β, γ - Uchburchakning a,v,s tomoyalari tugrisida yotuvchi mos burchaklar.
S, R - Uchburchakni yuzasi va perimetri.
R, g - Uchburchakga tashki va ichki chizilgan aylana;
Quyidagi formulalardan foydalanishni tavsiya etamiz.
R
c
b
a
2
sin
sin
sin
(1)
(Sinuslar teoremasi)
a
2
= b
2
= s
2
- 2bc Cos
(2)
(Kosinuslar teoremasi)
P = a + b + c
(3) (Uchburchakning perimetri)
PI =
2
p
(4)
(Uchburchakning yarim perimetri)
S
abc
R
4
(5)
(Uchburchak tashkarisiga chizilgan aylananing radiusi)
c
b
a
S
r
2
(6)
(Uchburchak ichiga chizilgan aylananing radiusi)
abSiny
S
2
1
(7)
)
)(
)(
(
c
PI
b
PI
a
PI
PI
S
(8) Geron formulasi.
Uchburchakning aniklovchi parametrlari: uchburchakning uchta burchagi, uchburchakning
yuzasi (S) uchburchakning perimetri (R) uchburchakka ichki va tashki chizilgan aylanalarning
radiuslari (g, R).