3.2.
Agar
A
kvadrat matritsa va
)
(
A
I
nosingular matritsa bo‘lsa,
A
A
I
A
I
A
1
1
)
(
)
(
tenglik bajarilishini ko‘rsating.
3.3.
d
b
c
a
A
matritsaning teskari matritsaga ega bo‘lishi shartini toping.
3. Mashqlar
3.4.
7
3
5
2
A
va
2
3
5
7
C
bo‘lsin.
1
A
C
ekanini ko‘rsating.
3.5.
4
0
3
24
1
18
5
0
4
B
matritsa
4
0
3
6
1
0
5
0
4
A
matritsaning teskari matritsasi bo‘lishini
ko‘rsating.
3.6.
2
6
10
11
21
17
5
3
11
36
1
B
matritsa
5
1
3
1
2
4
2
1
3
A
matritsaning teskari matritsasi
bo‘lishini ko‘rsating.
3.7.
Berilgan matritsalardan qaysi birlari uchun
teskari matritsa mavjud bo‘ladi?
1)
;
6
2
9
3
A
2)
;
2
7
5
0
B
3)
;
11
5
3
6
2
2
0
2
1
C
.
10
3
0
3
1
2
1
2
1
D
3.8.
1
1
1
0
A
bo‘lsin.
1
2
A
A
va
I
A
3
bo‘lishini ko‘rsating.
3.9.
Berilgan matritsalardan qaysi birlari o‘zaro teskari matritsalar bo‘ladi?
1)
0
1
1
1
va
;
1
1
1
0
2)
2
1
5
3
va
;
3
1
5
2
3)
5
0
0
3
va
;
3
0
0
5
5
1
4)
1
3
1
3
2
0
0
2
1
va
.
2
1
2
3
1
3
6
2
7
3.10.
5
2
6
3
A
matritsa berilgan.
1
A
matritsani toping.
3.11.
.
4
1
2
5
A
matritsa berilgan.
1
A
matritsani toping.
3.12.
Berilgan shartlarni qanoatlantiruvchi
A
matritsani toping:
1)
;
1
0
1
1
)
3
(
1
A
2)
;
3
2
1
1
)
2
(
1
T
A
3)
;
0
1
1
2
)
2
(
1
I
A
T
4)
8
3
4
3
0
1
2
1
0
1
A
.
3.13.
1
0
0
0
1
5
0
0
1
ABC
bo‘lsin.
1
1
1
A
B
C
ni toping.
3.14.
1
5
7
6
1
4
3
2
3
A
matritsa berilgan.
A
A
C
adj
ko‘paytmaning barcha nodiagonal
elementlarini toping.
3.15.
0
3
1
4
2
0
3
2
1
A
matritsa berilgan.
A
A
C
adj
ko‘paytmaning barcha diagonal
elementlarini toping.
A
matritsa berilgan.
1
A
matritsani toping:
3.16.
.
4
2
2
1
2
1
1
1
1
A
3.17.
.
8
10
3
4
6
2
3
2
1
A
A
matritsa berilgan.
1
A
matritsani Jordan-Gauss usuli bilan toping:
3.18.
.
1
2
1
1
1
2
1
1
1
0
1
2
2
1
0
1
A
3.19.
.
0
2
1
0
2
1
1
2
0
1
0
1
1
0
1
1
A
3.20.
A
matritsa berilgan. Matritsaning
LU
yoyilmasini toping:
1)
;
7
8
1
2
A
2)
;
5
12
4
6
A
3)
14
9
9
4
0
9
2
1
3
A
; 4)
4
5
6
9
13
4
2
3
2
A
;
5)
;
17
16
6
4
3
13
3
6
2
5
0
2
A
6)
.
10
6
8
12
9
6
14
5
6
7
8
4
4
3
2
A
A
matritsa berilgan.
)
(
A
r
ni minorlar ajratish usuli bilan toping:
3.21.
.
1
1
4
3
1
0
3
1
3
2
1
1
A
3.22.
.
7
2
2
2
4
1
3
2
1
A
A
matritsa berilgan.
)
(
A
r
ni elementar almashtirishlar usuli bilan toping:
3.23.
.
11
6
1
3
6
4
1
2
1
2
3
1
A
3.24.
.
9
0
3
1
1
3
4
1
2
3
1
2
4
3
1
1
A
Adabiyotlar
1.
Yo.U.Soatov. Oliy matematika 1-tom., T, “O’qituvchi” 1992
2.
Yo.U.Soatov. Oliy matematika 2-tom., T, “O’qituvchi” 1992
3.
Lay, David C. Linear algebra and is applications. Copyright. 2012, pp.162-
169.
4.
Kenneth L. Kuttler-Elementary Linear Algebra [Lecture notes] (2015). pp.
96-99.
5.
Sh.R.Xurramov ”Matematika” Toshkent- 2016.