2
=- J
5
.
208
4-misol. 2 —
x — 5lg(3
— x) = 0 tenglamani grafik usulda yeching.
Y e c h is h . Berilgan tenglamani
y=2'x
va
y=5lg(3~x)
ko'rinishda yozib,
ularning grafiklarini koordinata tekisligida yasaymiz. Bu grafiklar kesishish
nuqtalarining absissasi berilgan tenglamaning yechimi bo'ladi (25-chizma).
Javobi:
x ,= -l,5 .
x=l , 9.
j
xy + x - 2
=
0
,
5-misol. | x - l o g 2(y +
1
) = о tenSlamalar sistemasini grafik usulda
yeching.
Y e c h is h . Berilgan tenglamalar sistemasi quyidagi ko'rinishda yozib
olinadi:
\xy = 2 - x ,
|lo g 2(y + l) = x =>'
y = .
2
- x
X
y +
1
=
2
*
У = - ~
1,
x
y = 2x - I
У ~ ~ ~
1
va
У=2Х
—1 funksiyalaming grafiklari koordinata tekisligida
chiziladi (26-chizma).
У+'?~х
~
1
\
/У=2х-1
J
-x__ 0
14 - S. Alixonov
209
26-chizma.
Ularning kesishish nuqtalarining absissasi tenglamaning yechimi bo‘ladi.
Javobi: x —
1,
у
= 1.
16-§. Trigonometrik tenglamalar
1
.
sin x = a ten g lam ada |a|< l b o ‘lsa, u
x = { - \) k&Ksma+nk,
k e Z
yechim ga ega bo'ladi. Xususiy holda
a) agar sin x = 0 bo 'lsa, x =
nk, k&
Z;
b) agar sin
x =
1 bo 'lsa, x
= j +2nk, keZ ;
i
d) agar sin x =
-1
b o 'lsa, x = - y
+2nk, keZ;
e) agar sin2x =
a
bo 'lsa, x = ± a rc sin
4a
+
nk, ke Z .
Misol. 2 s i n ^ + x |+
41
= 0
Y e c h is h :
tenglamani yeching.
«V
2 s in
[ + x
]+n/3 = 0
<=> sin I
' n
—
+
X
L
I 4
J
4
2
<=>
К
/ л\к
.
— + x = ( -
1
)* arcsin
4
/
й)
j
+ n k
<=>
)
<=>
t * ( x = ( - l ) k+l- l - l + Kk), k e Z .
3
4
2.
cosx=a tenglamada |a|keZ\
yechimga
ega bo'ladi. Xususiy holda:
7Г
a) agar cos x =
0
bo'lsa, x = —
+як, k e Z
;
b) agar cos x = 1 bo'lsa, x =
Ink, ke
Z;
d) agar cos x =
- 1
bo'lsa,
x = n +2nk, keZ;
e) agar cos2x =
a
bo'lsa, x = ±arccos
4a +nk, keZ.
210
M iso l. c o s |
2 X ~ 2
I-
^ ~ ^ tenglamani yeching.
Y e c h is h .
cos
\ x
- \ | - 1
=
0
3
2
<=>
2
1
^
n k
3 * ~ 2
" T
(2
1
n k \
(
3
ЗтгАгЛ .
в1 1 " Г т п ' =Г т } ‘
e Z .
3.
tg x=a
tenglama
x=
arctg а
+nk, k e Z
yechimga ega bo'ladi. Xususiy
holda
a) agar tg
x —
0
bo'lsa,
x = nk, k e Z
;
n
b) agar tg
x
=
1
bo'lsa,
x = — + nk, keZ;
4
К
d) agar tg
x
=
—1
bo'lsa,
x =—— + nk, keZ;
e) agar tg
2
x= a bo'lsa, x=±arctg^/a
+nk, keZ.
Misol. 3
tg2 3x
- 1 = 0
tenglamani yeching.
Y e c h i s h .
\t g23x =
1
3x
=
±arctg
+
kn
V3
<=> ^3x = ± ^ +
kn
j
4. ctg
x
=
a
tenglama
x
= arcctg
a + nk, ke Z
yechimga ega bo'ladi.
К
a) agar ctgx =
0
bo‘lsa,
x = — як, ke Z
;
к
b) agar ctgx = 1 bo‘lsa, x = — +
nk
,
keZ;
/1
d) agar ctgx
= —1
bo'lsa, x = - — + тг&,
keZ;
e) agar ctg2x =
a
bo'lsa, x =±arcctg>/a +
як, keZ.
Misol.
ct£ 2
^2x - —
j
= 3 tenglamani yeching.
211
<=>
(
, л
л
л к \
.
о х = ± — + —+ — ,
к е z-
12
6
2
/
Matematika kursida har qanday trigonometrik tenglamalar ayniy almash-
tirishlarni bajarish orqali taqqoslanib sinx#a, cosx=a,
tgx=a,
ctg
x=a
ko'ri-
nishdagi eng sodda trigonometrik tenglamalarga keltiriladi.
Trigonometrik tenglamalar quyidagi metodlar yordamida yechiladi.
1
. Ко‘ paytuvchilarga keltirish usuli.
1-misol.
sin
2
x = cos
2
x sin
2
x tenglamani yeching.
Y e c h is h . sin2x - cos2x sin2x = 0, sin2x(l-cosx) =0
1) agar l~cosx*0 bo'lib, sin2x=0 bo'lsa,*\= у
n, n e Z
bo'ladi.
2) agar sin2x*0 bo'lib, 1—cosx=0 bo'lsa, cosx=l, x=2
nn, n e Z
bo'ladi.
2-misol.
sin3x — sin x = 0 tenglamani yeching.
Y e c h i s h . sin3x - sin x = 2sin x cos 2x = 0
1) agar cos2x*0 bo'lib, sinx=0 bo'lsa,
x=nn, ne.Z\
7t
И7С
2)
agar sinx
*0
bo'lib, cos
2
x
= 0
bo'lsa,
x = ~
4
+ ~ ^ ’ n e Z
bo'ladi.
3-misol.
cos
2
x+cos
2
2x+cos
2
3x= 1,5 tenglamani yeching.
,
1
+ c o s
2
x
„
Y e c h is h . cos2x = ----- ------ formulaga ко ra
l
+ cos2x
l + cos4x
l
+ c o s
6
x
3
«>
<=> (co s
2
x + cos4x + c o s
6
x =
0
)
[(c o s
2
x + c o s
6
x) + cos4x =
0
] <=>
<=> [2 c o s4 x c o s2 x + cos4x =
0
] <=> co s4 x (c o s2 x +
1
) =
0
.
%
m
1) agar 2cos2x+l*0 bo'lib, cos4x=0 bo'lsa, x= — + — , n e z ;
o
4
2) agar cos4x*0 bo'lib, 2cos2x+l=0 bo'lsa, c o s 2 x = -^ -,
2л ^
к
„
2х
=— — + 2пп
; x = - - + jr
П ; neZ.
II.
0
‘zgaruvchilarni kiritish usuli.
1-misol.
2cos
2
x=3 sin x tenglamani yeching.
Y e c h is h . (2cos2x — 3 sin x = 0 )» (3 sin
x —
2(l-sin
2
x) = 0
о (3sin
x — 2 +
2 sin2x =0).
Agar sin
x = у
desak,
2y
2
+ 3y - 2 = 0,
У г
= -2 .
s in x = i j<=> | x =
7
~ + 2kn
j ,
k e z .
2-misol.
cos2x — 5 sin
x —
3 = 0 tenglamani yeching.
Y e c h i s h . cos2x= l-2sin2x formulaga ko‘ra
(1
-2sin
2
x-5sin x -3 = 0 ) о
(2sin
2
x+5sinx+2=0) « sinx=,y desak,
2.У
2
+
+ 2 = 0, j , = —2,
1
* — 2-
1
) sin
x ~ —2
tenglama yechimga ega emas.
\
, k e z;
2
) ( s in x = - - | o x = ( - l ) fc a r c s in f - -
1
+яА:
I
2J . I ■
I 2J J
x = (-1
)*+1
^ +
nk, k e Z.
6
III. Bir jinsli tenglamalarni yechish.
1- misol.
2
sin
2
x-sinxcosx—cos
2
x
= 0
tenglamani yeching.
Y e c h i s h . Bu tenglama sinus va kosinus funksiyalariga nisbatan bir
jinslidir. Tenglamalarning har ikki tom onini cos
2
x*0 ga bo'lsak,
2tg2x — tg x - 1 = 0 hosil bo‘ladi. Bundan tgx= 1 va tg x = — ^ .
л
1
) agar tgx=l bo'lsa,
x = - — +nk, k e Z
;
2) agar tg x = — ^ bo'lsa, x = —arctg^-
+nk, ke Z
bo'ladi.
2- misol.
cos
2
x+3sin
2
x+2 ^3 sinxcosx=3 tenglamani yeching.
Y e c h is h . Bu tenglama ayniy almashtirishlar bajarish orqali bir jinsli
ko'rinishga keltiriladi.
213
cos
2
x +
3 sin
2
x +
2л/3 sin
x
cos
x =
3(sin
2
x +
cos
2
x),
cos
2
x + 3sin
2
x + 2>/3 s in x cos x - 3 sin
2
x - 3 cos
2
x = 0
2
cos
2
x - 2%/3 sin x cos x =
0
.
2
cos x(cos x - л/3 sin x) =
0
.
1
) agar cosx - V3sinx/0 bo‘lib, cosx
=0
bo'lsa,
х = ^ + л к , keZ;
2
) agar cos x
*0
bo'lib, cosx - л/3 sin л=Ь bo'lsa, t g x = ^ , x = ^ r +&
7
Г,
keZ;
IV. asin x+bcosx =
с
ko'rinishdagi tenglamani yechiftg.
X
/ hsu/. Bu tenglamani yechish uchun /&— = / almashtirish bajariladi.
2
f c §
Ma’lum ki,sin * ~ ~
^ x ’
c o s x ~
"
2
* ’ edi, shunga ko'ra berilgan
l + fc
2
1
+ #
2
tenglama quyidagi ko'rinishni oladi:
2
аГ + 6 0 - ^ ) =Ci
2
at + b - b t 2 =c + ct2,
\ + t2
1
+
12
7
a ± yla2 + b2
—
c2
(b + c)t - 2at + (c - b)
=
0
,
t
= ------------- ---------
c +
b
~
d + v a
2
+
b2 — с2
л
,
~>
i
'
i
i
i
x =
2
arctg
---------------------- +
2
Att,
k e z , a + b > c
va
b ± - c .
c + b
Agar
6
= -c bo'lsa, kvadrat tenglama chiziqli tenglamaga almashadi:
A
b
2at+2b=0,
t
= ---- , x = -2arctg — +2for, &e Z
о
a
I I usul.
Tenglamaning har ikkala tom oniл/а
Do'stlaringiz bilan baham: |