47
3
2
5
3
5
)
(
3
2
6
7
5
7
1
5
7
)
(
5
2
0
10
7
10
7
1
1
1
2
2
1
2
1
2
1
2
2
1
n
n
n
n
n
n
n
n
n
D
D
D
C
D
D
C
C
C
D
x
x
D
D
D
2.3.6-Misol.
1-usul
3
1
0
0
0
0
0
2
3
0
0
0
0
0
.
.
.
.
.
.
.
.
0
0
2
3
1
0
0
0
0
0
2
3
1
0
0
0
0
0
2
5
4
0
0
0
0
0
6
5
Bu n-tartibli determinantni quyidagiga keltiramiz.
48
1
1
3
0
0
0
.
.
.
.
.
0
3
1
0
0
2
3
0
0
0
2
4
6
3
1
0
0
0
0
0
2
3
0
0
0
0
0
.
.
.
.
.
.
.
.
0
0
2
3
1
0
0
0
0
0
2
3
1
0
0
0
0
0
2
3
1
0
0
0
0
0
2
5
5
n
n
Bundan quyidagini olamiz.
2
3
2
3
.....
0
0
0
.
.
.
.
.
0
3
1
0
0
2
3
1
0
0
2
3
24
3
0
0
0
.
.
.
.
.
0
3
1
0
0
2
3
1
0
0
2
3
10
3
0
0
0
.
.
.
.
.
0
3
1
0
0
2
3
1
0
0
2
3
25
n
n
n
Birinchi qator bo'yicha yoyib chiqib rekurent munosabatni topildi.
n
D
3
0
0
0
.
.
.
.
.
0
3
1
0
0
2
3
1
0
0
2
3
50
va
2
3
0
0
0
.
.
.
.
.
0
3
1
0
0
2
3
1
0
0
2
3
n
determinantnga tegishli shuning uchun
1
1
2
1
1
2
9
n
n
n
n
C
C
D
bo'ladi.
2.3.7-Misol.
5
2
0
0
0
0
0
3
5
0
0
0
0
0
.
.
.
.
.
.
.
.
0
0
3
5
2
0
0
0
0
0
3
5
2
0
0
0
0
0
3
4
3
0
0
0
0
0
2
1
Bu determinantni rekurent ko'rinishiga keltirib olishimiz kerak.
3
2
5
0
0
0
.
.
.
.
.
0
5
2
0
0
3
5
2
0
0
3
5
6
5
0
0
0
.
.
.
.
.
0
5
2
0
0
3
5
2
0
0
3
5
2
n
n
n
D
rekurent usulga keltirib oldik
52
va
2
5
0
0
0
.
.
.
.
.
0
5
2
0
0
3
5
2
0
0
3
5
n
determinantnga
tegishli
shuning
uchun
1
1
1
2
1
1
3
4
2
5
n
n
n
n
n
C
C
D
bo'ladi.
2.3.8-Misol.
0
0
0
0
.
.
.
.
.
.
0
1
0
0
0
1
0
0
0
Birinchi qator bo'yicha yoyib chiqib rekurent munosabatni topamiz.
0
)
(
D
)
(
2
2
-
n
1
x
x
D
D
n
n
Bu yerda bu kvadrat tenglamaning ildizlari
1
x
2
x
1
1
2
1
n
n
n
n
n
C
C
D
II Bobning Xulosasi.
Mazkur bitiruv – malakaviy ishning ikkinchi bobida ba’zi misollarni yechishga
tadbiqlari va ularning yechimlarini topish usullari yoritilgan.
Jumladan yuqori tartibli determinantlarni uchburchak ko'rinishiga olib kelib
yechish yordamida topish usuli ko’rsatilgan bo’lsa
2
1
n
n
n
qD
pD
D
ko’rinishdagi determinantlarni yechimlarini topish rekurrent munosabatlar
yordamida amalga oshirilgan. Bu bobda shuningdek ba'zi bir misollar ikkixil usul
yordamida ham yechib ko'rsatilgan.
53
Xotima.
Ishning birinchi bobida mavzuni bayon qilishda zarur bo`ladigan ma`lumotlar keltirilgan. Bu bob
ikki paragrafdan iborat bo`lib, birinchi paragrafda ikkinchi va uchinchi tartibli determinantlar,
ularning xossalari va unga doir misollar, ikkinchi paragrafda Yuqori tartibli determinantlar va
ularning xossalari va chiziqli tenglamalar sistemasini determinant (Kramer) usuli bilan yechish
va unga doir misollar yechib ko’rsatilgan.
Mazkur bitiruv – malakaviy ishning ikkinchi
bobida ba’zi misollarni yechishga tadbiqlari va ularning yechimlarini topish
usullari yoritilgan.
Jumladan yuqori tartibli determinantlarni uchburchak ko'rinishiga olib kelib
yechish yordamida topish usuli ko’rsatilgan bo’lsa
2
1
n
n
n
qD
pD
D
ko’rinishdagi determinantlarni yechimlarini topish rekurrent munosabatlar
yordamida amalga oshirilgan. Bu bobda shuningdek ba'zi bir misollar ikkixil usul
yordamida ham yechib ko'rsatilgan.
54
Adabiyotlar .
1. I.A.Karimov ,“Yuksak ma’naviyat-yengilmas kuch” ,Toshkent-2008 yil.
2. I.A.Karimov ,“Barkamol avlod dasturi” Toshkent-2010 yil.
3. I.A.Karimov ,“O’zbekiston XXI asrga intilmoqda”. Toshkent 1999 yil.
4. Проскуряков И.В. “Сборник задач по линейной алгебре”
http://cv01.twirpx.net/0960/0960758.jpg
5. В. Ф. Каган, “Основания теории определителей”.
https://www.google.ru/?gws_rd=ssl#newwindow=1&q=%D0%92.+%D0%A4.
+%D0%9A%D0%B0%D0%B3%D0%B0%D0%BD+pdf.
6. Д. К. Фаддеев и И. С. Соминский, “Сборник задач по высшей алгебре”.
http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=rm&paperid=7
085&option_lang=rus.
7.А.И.Мальцев, ”Основы линейной
алгебры”.http://www.newlibrary.ru/book/malcev_i_a_/osnovy_lineinoi_algebr
y.html .
8. А.Г. Курош, “Олий алгебра”, тошкент 1976.
9.
Ф. Р. Гантмахер, ”Теория
матриц”https://ru.wikipedia.org/wiki/%D0%93%D0%B0%D0%BD%D1%82
%D0%BC%D0%B0%D1%85%D0%B5%D1%80,_%D0%A4%D0%B5%D0%
BB%D0%B8%D0%BA%D1%81_%D0%A0%D1%83%D0%B2%D0%B8%D
0%BC%D0%BE%D0%B2%D0%B8%D1%87
10. www.ilm.uz
11. www.google.com
12.
w.w.w.legioner.ru
13. w.w.w.ZiyoNet.uz