.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
29
n
n
n
n
x
x
x
x
a
x
x
x
a
a
x
x
a
a
a
x
3
2
1
3
3
2
1
2
23
2
1
1
13
12
1
.
.
.
.
.
Bundan quyidagini olamiz
n
n
n
n
n
n
n
a
x
a
x
a
x
a
a
a
x
a
x
a
a
a
a
a
x
a
a
a
x
1
13
3
12
2
1
3
13
3
12
2
1
2
13
23
12
2
1
13
12
1
0
.
.
.
.
.
0
0
Bu esa quyidagiga teng
n
n
n
n
n
n
n
n
a
x
a
x
a
x
a
x
a
a
a
x
a
x
a
x
a
a
a
a
a
x
a
x
a
a
a
a
a
a
a
x
x
1
14
4
13
3
12
2
1
4
14
4
13
3
12
2
1
3
14
34
13
3
12
2
1
2
14
24
13
23
12
2
1
.
.
.
.
.
Birinchi satrni qoldirib qolgan satrlardan birinchi satrni ayirib o'z joyiga yozamiz
n
n
n
n
n
n
n
n
a
x
a
x
a
x
a
a
a
x
a
x
a
a
a
a
a
x
a
a
a
a
a
a
a
x
x
2
24
4
23
3
2
4
24
4
23
3
2
3
24
34
23
3
1
2
14
24
13
23
12
2
1
0
.
.
.
.
.
0
0
Bu esa quyidagiga teng
30
n
n
n
n
n
n
n
n
a
x
a
x
a
x
a
x
a
a
a
x
a
x
a
x
a
a
a
a
a
x
a
x
a
a
a
a
a
a
a
x
a
x
x
2
25
5
24
4
23
3
2
5
25
5
24
4
23
3
2
4
25
45
24
4
23
3
2
3
25
35
24
34
23
3
12
2
1
.
.
.
.
.
)
(
Birinchi satrni qoldirib qolgan satrlardan birinchi satrni ayirib o'z joyiga yozamiz
n
n
n
n
n
n
n
n
a
x
a
x
a
x
a
a
a
x
a
x
a
a
a
a
a
x
a
a
a
a
a
a
a
x
a
x
x
3
35
5
34
4
3
5
35
5
34
4
3
4
35
45
34
4
2
3
25
35
24
34
23
3
12
2
1
0
.
.
.
.
.
0
0
)
(
Shu tariqa davom etamiz va quyidagi ifodani olamiz
)
......(
)
(
)
(
)
(
),
1
(
34
4
23
3
12
2
1
n
n
n
a
x
a
x
a
x
a
x
x
2.1.6-Misol
n
n
n
n
n
a
a
a
b
a
a
a
b
a
a
a
b
a
a
a
.
.
.
.
.
1
1
1
1
2
2
2
2
2
1
1
1
1
1
n- ustunni qoldirib qolgan ustunlarni ayirib quyidagini olamiz
n
n
a
b
a
b
a
b
0
0
.
.
.
.
.
0
0
0
0
1
0
0
0
2
2
1
1
2
)
1
(
2
1
)
1
(
n
n
n
b
b
b
2.1.7-Misol
31
3
2
2
2
.
.
.
.
.
2
3
2
2
2
2
3
2
2
2
2
3
Birinchi satrni qoldirib qolgan satrlardan ayirsak quyidagi kelib chiqadi
1
0
0
1
.
.
.
.
.
0
1
0
1
0
0
1
1
2
2
2
3
Endi birinchi ustunga qolgan ustunlarni qo'shamiz
1
2
1
0
0
0
.
.
.
.
.
0
1
0
0
0
0
1
0
2
2
2
)
1
(
2
3
n
n
2.1.8-Misol
x
x
x
x
x
a
a
a
a
n
0
0
0
.
.
.
.
.
0
0
0
0
2
1
0
Birinchi ustunga qolgan ustunlarni yozib quyidagini olamiz
32
x
x
x
x
a
a
a
a
a
a
n
n
0
0
0
.
.
.
.
.
0
0
0
0
0
2
1
1
0
Bu determinant
)
1
(
)
1
(
n
n
tartibli bo'ganligi uchun
x
x
x
x
x
x
a
a
a
n
0
0
0
.
.
.
.
.
0
0
0
0
0
0
0
)
(
1
0
Ushbu ifoda kelib chiqadi va bu determinantning tartibi
n
n
ko'rinishiga ega
bo'lib bundan quyidagi kelib chiqadi
n
n
x
x
x
x
x
a
a
a
0
0
0
.
.
.
.
.
0
0
0
0
0
0
0
0
)
.....
(
1
0
Birinchi satr bo’yicha yoyib quyidagini olamiz
1
1
0
0
0
0
.
.
.
.
.
0
0
0
0
0
0
0
)
(
n
n
x
x
x
x
x
x
x
a
a
a
shu tariqa davom etsak quyidagi natija kelib chiqadi
33
n
n
n
x
a
a
a
x
x
x
x
x
x
x
a
a
a
)
(
0
0
0
.
.
.
.
.
0
0
0
0
0
0
0
)
(
1
0
2
1
0
2.1.9-Misol.
n
n
x
x
x
x
x
a
a
a
a
0
0
0
.
.
.
.
.
0
0
0
0
3
2
2
1
3
2
1
Birinchi satrga qolgan satrlarni qo'shib birinchi satrga yozsak ushbu kelib chiqadi
n
n
n
x
x
x
x
x
x
a
a
a
x
a
0
0
0
.
.
.
.
.
0
0
0
0
3
2
2
1
3
2
1
1
Bu yerda birinchi ustun bo’yicha yoyamiz
n
n
n
n
x
x
x
x
x
x
a
a
a
a
x
x
x
x
x
x
x
x
a
0
0
0
.
.
.
.
.
0
0
0
0
0
0
0
.
.
.
.
.
0
0
0
0
0
0
0
)
(
4
3
3
2
4
3
2
1
4
3
3
2
2
1
1
quyidagi natijaga erishamiz
n
n
n
n
n
n
n
n
n
x
x
a
x
x
a
x
x
a
x
x
x
x
a
x
x
x
x
a
x
x
x
x
x
a
x
x
x
x
x
a
2
2
2
1
1
1
2
1
2
1
3
3
2
1
3
2
2
1
3
2
1
1
)
(
)
(
)
(
)
(