Source code online books for professionals by professionals



Download 4,67 Mb.
Pdf ko'rish
bet17/266
Sana31.12.2021
Hajmi4,67 Mb.
#213682
1   ...   13   14   15   16   17   18   19   20   ...   266
Bog'liq
2 5296731884800181221

Complexity
Name
Examples, Comments
Q(1)
Constant
Hash table lookup and modification (see “Black Box” sidebar on dict).
Q(lg n)
Logarithmic
Binary search (see Chapter 6). Logarithm base unimportant.
7
Q(n)
Linear
Iterating over a list.
Q(n lg n)
Loglinear
Optimal sorting of arbitrary values (see Chapter 6). Same as Q(lg n!).
Q(n
2
)
Quadratic
Comparing n objects to each other (see Chapter 3).
Q(n
3
)
Cubic
Floyd and Warshall’s algorithms (see Chapters 8 and 9).
O(nk)
Polynomial
k nested for loops over n (if k is a positive integer). For any constant k > 0.
W(kn)
Exponential
Producing every subset of n items (k = 2; see Chapter 3). Any k > 1.
Q(n!)
Factorial
Producing every ordering of n values.
Note
 

  actually, the relationship is even stricter: f is o(g), where the “Little Oh” is a stricter version if “Big Oh.”  
intuitively, instead of “doesn’t grow faster than,” it means “grows slower than.” Formally, it states that f(n)/g(n) converges 
to zero as n grows to infinity. You don’t really need to worry about this, though.
Any polynomial (that is, with any power k > 0, even a fractional one) dominates any logarithm (that is, with any 
base), and any exponential (with any base k > 1) dominates any polynomial (see Exercises 2-5 and 2-6). Actually, all 
logarithms are asymptotically equivalent—they differ only by constant factors (see Exercise 2-4). Polynomials and 
exponentials, however, have different asymptotic growth depending on their exponents or bases, respectively. So, n
5
 
grows faster than n
4
, and 5
n
 grows faster than 4
n
.
The table primarily uses Q notation, but the terms polynomial and exponential are a bit special, because of  
the role they play in separating tractable (“solvable”) problems from intractable (“unsolvable”) ones, as discussed  
in Chapter 11. Basically, an algorithm with a polynomial running time is considered feasible, while an exponential 
one is generally useless. Although this isn’t entirely true in practice, (Q(n
100
) is no more practically useful than  
Q(2n)); it is, in many cases, a useful distinction.
6
 Because of this division, any running time in O(n
k
), for any k > 0,  
5
For the “Cubic” and “Polynomial” row, this holds only when k ³ 3.
6
Interestingly, once a problem is shown to have a polynomial solution, an efficient polynomial solution can quite often be  
found as well.
7
I’m using lg rather than log here, but either one is fine.


Chapter 2 

 the BasiCs
15
is called polynomial, even though the limit may not be tight. For example, even though binary search (explained in 
the “Black Box” sidebar on bisect in Chapter 6) has a running time of Q(lg n), it is still said to be a polynomial-time 
(or just polynomial) algorithm. Conversely, any running time in W(kn)—even one that is, say, Q(n!)—is said to be 
exponential.
Now that we have an overview of some important orders of growth, we can formulate two simple rules:
In a sum, only the dominating summand matters.

For example, Q(n
2
 + n
3
 + 42) = Q(n
3
).
In a product, constant factors don’t matter.

For example, Q(4.2n lg n) = Q(n lg n).
In general, we try to keep the asymptotic expressions as simple as possible, eliminating as many unnecessary 
Download 4,67 Mb.

Do'stlaringiz bilan baham:
1   ...   13   14   15   16   17   18   19   20   ...   266




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2025
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish