2 Mathematical Model of the
Active Magnetic Regenerator
One-dimensional
time-
dependent models of the AMR have
been developed in [1, 2, 5, 6, 7] based
on the law of energy conservation.
The most detailed model, which takes
into account the axial thermal
conduction in the bed, thermal
dispersion, and dissipation of heat as a
result of friction in fluid, has been
developed in [5] through the following
nonlinear system of partial differential
equations (PDE):
3
4
3
(
)
1
(1
)
,
f
f
p
f
f
p
m
f
f
p
f
f
f
p
p
T
V
c
T
t
Ac
c
x
h a
T
T
c
T
k
d
c
x
x
V
ff
Ac
D
(1)
(1
)
1
,
m
f
m
m
m
m
S
m
m
m
m
T
h a
T
T
t
c
T
dH
H
dt
T
k
c
x
x
(2)
where
)
,
(
t
x
T
T
f
f
is the fluid
temperature;
)
,
(
t
x
T
T
m
m
is the bed
temperature;
x
is the spatial
coordinate
)
0
(
L
x
;
t
is the
chronological coordinate
)
0
(
P
t
;
(Re)
h
h
is
the
heat
transfer
coefficient between the fluid and
material;
a
is the contact area of the
fluid and material per unit of bed
volume;
)
(x
Ac
Ac
is the cross
section area of bed;
is the bed
porosity
(pore
volume
ratio);
)
,
(
t
x
H
H
is the magnetic induction;
)
,
(
H
T
c
c
m
m
m
is the heat capacity of
the material;
m
is the density of the
material;
L
is the bed length;
P
is the
11
time period of the flow in either
direction;
)
(
m
m
m
T
k
k
is the thermal
conductivity
of
the
material;
)
(
f
f
f
T
is the density of the fluid;
)
(
f
p
p
T
c
c
is the heat capacity of the
fluid;
p
D
is the particle diameter;
(Re)
ff
ff
is the fluid friction factor;
V
is the volumetric flow rate;
)
(
f
f
f
T
k
k
is the thermal conductivity
of the fluid;
(Re)
d
d
is the
coefficient of thermal dispersion;
)
(
f
T
is the viscosity of the fluid;
and
)
Re(
Re
f
T
is the Reynolds
number.
3 Natural Cubic Interpolating
Spline for the Heat Capacity of
Gadolinium
One of the difficulties in the
development of a computer simulator
of AMR is determination of the heat
capacity of the magnetic material
(gadolinium),
)
,
(
H
T
c
c
m
m
m
, which
depends on the temperature of the
material,
)
,
(
t
x
T
T
m
m
, as well as on the
magnetic induction,
)
( t
H
H
. To
obtain a highly accurate approximation
function for the heat capacity of
gadolinium, we used the combination
of natural cubic spline and the least
squares curve fitting techniques. First,
we constructed the natural cubic
splines of the heat capacity of
gadolinium,
(
)
m
m
m
c
c T
, using the
experimental measurements at the
fixed values of the magnetic induction,
)
( t
H
H
. Then we used the least
squares curve fitting technique to
obtain the approximation function of
the heat capacity of gadolinium,
)
,
(
H
T
c
c
m
m
m
, which depends on the
temperature
of
the
material,
)
,
(
t
x
T
T
m
m
, as well as on the magnetic
induction,
)
( t
H
H
:
,
,
, 1
(
,
)
,
m
m
m
m i
m i
m
m i
c
c T H
c
T
T
T
where
2
3
,
1
2
3
4
,
m i
i
i
m
i
m
i
m
c
a
a
T
a
T
a
T
2
3
,1
,1
,1
,1
4
,1
1
1
2
3
4
5
,
i
i
i
i
i
i
a
b
b
H
b
H
b
H
b
H
2
3
,2
,2
,2
,2
4
,2
2
1
2
3
4
5
,
i
i
i
i
i
i
a
b
b
H
b
H
b
H
b
H
2
3
,3
,3
,3
,3
4
,3
3
1
2
3
4
5
,
i
i
i
i
i
i
a
b
b
H
b
H
b
H
b
H
2
3
,4
,4
,4
,4
4
,4
4
1
2
3
4
5
,
i
i
i
i
i
i
a
b
b
H
b
H
b
H
b
H
,
,
,
,
,
,
1
1
,
2
2
,
3
3
,
4
4
,
5
5
,
,
i j
i j
i j
i j
i j
m i
B
b
B
b
B
b
B
b
B
b
Temp
T
1, 2,3,..., 24,
1, 2,3, 4,
i
j
,
( 288.870, 289.079, 289.409, 289.446, 290.049,
290.611, 290.837, 291.132, 291.191, 291.845,
292.366, 292.616, 292.813, 292.894, 293.603,
294.153, 294.419, 294.536, 294.633, 295.363,
295.942, 296.193, 296.270, 296.3
m i
Temp
T
73 ),
12
,
1
1
41277883.91
430197.88 1494.50
1.73
33481355.65
345637.51
1189.32 1.36
33481344.55
345637.39
1189.32 1.36
33481327.22
345637.22
1189.32 1.36
33481402.69
345638.00
1189.32 1.36
33481400.50
345637.97
1189
i j
B
b
.32 1.36
21879263.72
225410.39
774.15
0.89
21879253.51
225410.28
774.15
0.89
21879261.24
225410.36
774.15
0.89
21879303.08
225410.79
774.15
0.89
21879292.89
225410.69
774.15
0.89
34427574.32
351866.70
1198.67 1.36
34427563.40
351866.59
1198.67 1.36
34427575.01
351866.71
1198.67 1.36
34427567.79
351866.64
1198.67 1.36
34427556.02
351866.52
1198.67 1.36
4394662.67
43714.80
144.93
0.16
4394655.12
43714.72
144.93
0.16
4394670.
09
43714.88
144.93
0.16
4394633.34
43714.50
144.93
0.16
4394627.92
43714.45
144.93
0.16
11114599.04
111777.88
374.72
0.42
11114598.90
111777.88
374.72
0.42
11114566.80
111777.56
374.72
0.42
,
2
2
36934992.66
384928.41
1337.19 1.55
25364719.16
261604.67
899.34
1.03
19519921.62
201017.77
689.99
0.79
2456779.77
26762.55
96.96
0.12
50967030.24
525804.19 1808.12
2.07
50017112.71
515998.12 1774.37
2.0
i j
B
b
3
3882970.00
40121.85
138.14
0.16
9223817.09
95157.16
327.18
0.37
472935.11
4743.79
15.89
0.02
30029296.32
308566.31
1056.93 1.21
25515453.85
262249.27
898.51
1.03
21407195.72
218817.89
745.51
0.85
15571819.86
159
031.84
541.33
0.61
30323660.34
310129.25 1057.21
1.20
25187270.73
257646.24
878.45
1.00
19986436.54
204604.10
698.13
0.79
12365591.79 125048.82
421.54
0.47
8280509.14
83440.13
280.27
0.31
27356313.52
277673.03
93
9.51
1.06
1341918.70
13444.98
44.92
0.05
1033975.32
10639.74
36.46
0.04
4566031.67
46080.10
155.03
0.17
4492152.01
45332.02
152.51
0.17
36073644.01
365290.37 1232.98
1.39
13
,
3
3
15672405.43
163121.93
565.93
0.65
1771608.53
17908.32
60.30
0.07
2319725.28
24502.26
86.24
0.10
11842987.16
123207.32
427.25
0.49
21991992.97
226750.59
779.29
0.89
21295392.54
219559.53
754.55
0.86
8377
i j
B
b
762.50
86313.45
296.40
0.34
12116332.94 124837.93
428.73
0.49
7914395.98
81547.41
280.06
0.32
10804577.62
110872.95
379.26
0.43
7494453.23
76907.40
263.09
0.30
5643959.94
57792.14
197.24
0.22
1559220.94
15942.16
5
4.32
0.06
7951701.61
81417.87
277.87
0.32
4698664.38
48178.72
164.65
0.19
884750.15
9281.47
32.42
0.04
8173866.94
83021.85
281.09
0.32
5314325.73
53895.94
182.20
0.21
13580528.91
138063.75
467.87
0.53
2895206.01
29
280.19
98.70
0.11
4637514.05
46942.18
158.38
0.18
3069503.58
31060.53
104.76
0.12
3121219.02
31584.19
106.53
0.12
20699776.16
209521.02
706.91
0.80
,
4
4
2360656.0
24553.2
85.1
0.0984
367045.1
3863.9
13.6
0.0158
1185308.7 12346.0
42.9
0.0496
2503917.2
26012.9
90.1
0.1040
3194601.9
32927.4 113.1
0.1296
3042617.2
31358.4 107.7
0.1234
1566309.7
16130.2
55.4
0
i j
B
b
.0633
2314021.0
23835.1 81.8
0.0937
1732213.0
17841.0
61.2
0.0701
1420454.1 14566.6
49.8
0.0567
698249.2
7156.0
24.4
0.0278
803290.8
8238.3
28.2
0.0321
13654.0
131.7
0.4
0.0005
871460.7
8934.2
30.5
0.0348
323581.1
3
336.1
11.5
0.0131
508540.9
5150.6
17.4
0.0196
1543816.3 15699.6
53.2
0.0601
971910.1
9874.4
33.4
0.0378
2116463.9
21528.4
73.0
0.0825
658394.8
6655.8
22.4
0.0252
1038532.6
10509.3
35.4
0.0399
859330.5
8694.2
29.3
0.
0330
869673.6
8799.0
29.7
0.0334
3303633.1
33436.4 112.8
0.1269
14
,
5
5
112571.8
1170.4
4.1
0.0047
32827.1
342.8
1.2
0.0014
79584.9
827.5
2.9
0.0033
138189.8
1434.9
5.0
0.0057
146736.1 1512.1
5.2
0.0059
136603.8 1407.5
4.8
0.0055
77551.3
798.4
2.7
0.0031
120277.6 1238.6
4.3
0.0
i j
B
b
049
94419.4
972.2
3.3
0.0038
63213.9
648.1
2.2
0.0025
15067.1
154.1
0.5
0.0006
44994.7
461.7
1.6
0.0018
1687.8
16.6
0.1
0.0001
37650.7
386.3
1.3
0.0015
10256.8
106.4
0.4
0.0004
45217.8
459.4
1.6
0.0018
86629.0
881.3
3.
0
0.0034
53948.7
548.5
1.9
0.0021
104817.9
1066.4
3.6
0.0041
33925.1
342.8
1.2
0.0013
59267.5
599.7
2.0
0.0023
52099.4
527.1
1.8
0.0020
52690.4
533.1
1.8
0.0020
160866.6 1628.1
5.5
0.0062
In Figure 2, the fitted surface of
the heat capacity of the magnetic
material is illustrated, where x is the
temperature of gadolinium in Kelvin, y
is the magnetic induction in Tesla, and
z is the heat capacity of gadolinium in
J/(kg*K):
Figure 2: The heat capacity of
gadolinium.
Do'stlaringiz bilan baham: |