Beginning Anomaly Detection Using


FODVV &11 QQ0RGXOH  GHI



Download 26,57 Mb.
Pdf ko'rish
bet90/283
Sana12.07.2021
Hajmi26,57 Mb.
#116397
1   ...   86   87   88   89   90   91   92   93   ...   283
Bog'liq
Beginning Anomaly Detection Using Python-Based Deep Learning

FODVV

&11 QQ0RGXOH 

GHI

BBLQLWBB VHOI 

VXSHU &11VHOI BBLQLWBB

VHOIFRQY QQ&RQYG 

VHOIFRQY QQ&RQYG  

VHOIGHQVH QQ/LQHDU   

VHOIGHQVH  QQ/LQHDU QXPBFODVVHV

GHI

IRUZDUG VHOI[ 

[ )UHOX VHOIFRQY [

[ )UHOX VHOIFRQY [

[ )PD[BSRROG [

[ )GURSRXW [

[ [YLHZ   

[ )UHOX VHOIGHQVH [

[ )GURSRXW [

[ VHOIGHQVH [



UHWXUQ

)ORJBVRIWPD[ [GLP 



Figure 3-57.  Creation of a convolutional neural network in PyTorch

Chapter 3   IntroduCtIon to deep LearnIng




115

The procedure is a bit different than in Keras. In this example, the major layers were 

defined under __init__, which are your two convolutional layers and the two dense 

layers. The rest of the layers are defined under forward(). In forward(), you set x equal 

to the output of the activation function of the first convolutional layer. This new x is 

now the input of the next convolutional layer, and you set x equal to the output of the 

activation function of the second convolution layer. This same process repeats for the 

other layers, but the exact flow of data can be a bit confusing, so Figure 

3-58

 shows an 



example of what this code actually does.

The original inputs of x, self.conv1, and F.relu can be shown as such. x passes into the 

convolutional layer, and the outputs of that layer pass through the ReLU function. Then 

you get your final output X’ (Figure 

3-59

).

Figure 3-58.  F.relu is f(x), x is the training data, and self.conv1 is the first 



convolutional layer

Chapter 3   IntroduCtIon to deep LearnIng




116

Now, X is X’, and this new X gets passed onto the next layer (Figure 

3-60

).

Figure 3-59.  The outputs of f(x) are now the new x. Basically, x = f(x). In this case, 



the output x’ is the new x

Figure 3-60.  The new x is now the new input for the next convolutional layer

Chapter 3   IntroduCtIon to deep LearnIng




117

The same process repeats again, except with the new value of X (Figure 

3-61

).

And now you get the new output X



 (Figure 

3-62

).

This new output X



″ is then the new value of X, and the process continues.


Download 26,57 Mb.

Do'stlaringiz bilan baham:
1   ...   86   87   88   89   90   91   92   93   ...   283




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish