Beginning Anomaly Detection Using


rate: A float between 0 and 1 that determines the proportion of input  units to drop. •  data_format



Download 26,57 Mb.
Pdf ko'rish
bet224/283
Sana12.07.2021
Hajmi26,57 Mb.
#116397
1   ...   220   221   222   223   224   225   226   227   ...   283
Bog'liq
Beginning Anomaly Detection Using Python-Based Deep Learning

rate: A float between 0 and 1 that determines the proportion of input 

units to drop.

• 

data_format: ‘channels_first’ or ‘channels_last’. This tells the 

flattening layer how to format the flattened output to preserve the 

formatting of channels first or channels last.

 Conv1D

keras.layers.Conv1D()

Check out Chapter 

7

 for a detailed explanation on how one-dimensional 



convolutions work.

This layer is a one-dimensional (or temporal) convolutional layer. It basically passes 

a filter over the one-dimensional input and multiplies the values element-wise to create 

the output feature map.

These are the parameters that the function takes:

• 

filters: An integer value that determines the dimensionality of the 

output space. In other words, this is also the number of filters in the 

convolution.

• 

kernel_size: An integer (or tuple/list of a single integer) that specifies 

the length of the filter/kernel that is used in the 1D convolution.

• 

strides: An integer (or tuple/list of a single integer) that tells the 

layer how many data entries to shift by after one element-wise 

multiplication of the filter and the input data. Note: A stride value != 1 

isn’t compatible if the dilation_rate != 1.

Appendix A   intro to KerAs



335

• 

padding: ‘valid’, ‘causal’, or ‘same’. ‘valid’ doesn’t zero pad the output.  

‘same’ zero pads the output so that it’s the same length as the input. 

‘causal’ padding generates causal, dilated convolutions. For an 

explanation on what ‘causal’ padding is, refer to Chapter 

7

.



• 

data_format: ‘channels_first’ or ‘channels_last’. This tells the 

flattening layer how to format the flattened output to preserve the 

formatting of channels first or channels last. ‘channels_first’ has 

the format (batch, features, steps), and ‘channels_last’ has the 

format (batch, steps, features).

• 

dilation_rate: An integer (or tuple/list of a single integer) serves 

as the dilation rate for this dilated convolutional layer. For an 

explanation of how this works, refer to Chapter 

7

.

• 




Download 26,57 Mb.

Do'stlaringiz bilan baham:
1   ...   220   221   222   223   224   225   226   227   ...   283




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish