Beginning Anomaly Detection Using


Model Compilation and Training



Download 26,57 Mb.
Pdf ko'rish
bet210/283
Sana12.07.2021
Hajmi26,57 Mb.
#116397
1   ...   206   207   208   209   210   211   212   213   ...   283
Bog'liq
Beginning Anomaly Detection Using Python-Based Deep Learning

 Model Compilation and Training

In most cases, the code to compile your model will look something like Figure 

A-3

.

Figure A-3.  Code to compile a model in Keras



However, there are many more parameters to consider:

• 

optimizer: Passes in the name of the optimizer in the string or an 

instance of the optimizer (you call the optimizer with whatever 

parameters you like. We will elaborate on this further below in the 



Optimizers section.)

• 

loss: Passes in the name of the loss function or the function itself.  

We elaborate on what we mean by this below in the 

Losses section.

• 

metrics: Passes in the list of metrics that you want the model to 

evaluate during the training and testing processes. Check out the 

Metrics section for more details on what metrics you can use.

• 

loss_weights: If you have multiple outputs and multiple losses, the 

model evaluates based on the total loss. The loss_weights are a list 

or dictionary that determines how much each loss factors into the 

overall, combined loss. With the new weights, the overall loss is now 

the weighted sum of all losses.

• 


Download 26,57 Mb.

Do'stlaringiz bilan baham:
1   ...   206   207   208   209   210   211   212   213   ...   283




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish