Beginning Anomaly Detection Using



Download 26,57 Mb.
Pdf ko'rish
bet248/283
Sana12.07.2021
Hajmi26,57 Mb.
#116397
1   ...   244   245   246   247   248   249   250   251   ...   283
Bog'liq
Beginning Anomaly Detection Using Python-Based Deep Learning

n samples, where n is the integer passed in. Note: 

Writing to TensorBoard too frequently can slow down the training 

process.

With that being said, Figure 

A-33

 shows an example of using TensorBoard as a 



callback when training a convolutional neural network on the MNIST data set.

Appendix A   intro to KerAs




354

Once you execute that code, you will notice the training process will begin. At this 

point, enter the line

tensorboard --logdir=/full_path_to_your_logs

 into your command prompt and press Enter. It should show you something like  

Figure 


A-34

.

WHQVRUERDUG NHUDVFDOOEDFNV7HQVRU%RDUG ORJBGLU *UDSK 



KLVWRJUDPBIUHT 

ZULWHBJUDSK 7UXHZULWHBLPDJHV 7UXH

FKHFNSRLQW 

NHUDVFDOOEDFNV0RGHO&KHFNSRLQW ILOHSDWK NHUDVB01,67B&11K

YHUERVH 

VDYHBEHVWBRQO\ 7UXH

PRGHOILW [BWUDLQ\BWUDLQ

EDWFKBVL]H EDWFKBVL]H

HSRFKV QBHSRFKV

YHUERVH 

YDOLGDWLRQBGDWD [BWHVW\BWHVW 

FDOOEDFNV >FKHFNSRLQWWHQVRUERDUG@



Figure A-33.  Code to define a TensorBoard callback and use that when training

Appendix A   intro to KerAs




355


Download 26,57 Mb.

Do'stlaringiz bilan baham:
1   ...   244   245   246   247   248   249   250   251   ...   283




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish