Beginning Anomaly Detection Using



Download 26,57 Mb.
Pdf ko'rish
bet161/283
Sana12.07.2021
Hajmi26,57 Mb.
#116397
1   ...   157   158   159   160   161   162   163   164   ...   283
Bog'liq
Beginning Anomaly Detection Using Python-Based Deep Learning

 art_load_balancer_spikes

This data set has mixture of normal data and anomalies. As you can see below, the time 

series has values at different timestamps.

Using visualization, you can plot the time series now. You convert the timestamp to 

datetime for this work and also drop the timestamp column. As shown below, the time 

series shows the datatime vs. the value column.

Dataset: art_load_balancer_spikes.csv

Figure 


6-47

 shows the code to generate a graph showing the time series.



Figure 6-47.  A graph showing the time series

Let’s add the anomaly column to the original dataframe and prepare a new 

dataframe. Using visualization, you can plot the new time series now. As shown below, 

the time series shows the datatime vs. the value column. Normal data points are shown 

in green and anomalies are shown in red. Figure 

6-48


 shows the code to generate a graph 

showing anomalies.

Chapter 6   Long Short-term memory modeLS 



251

Since this data set has some noise or anomalies, there are anomalies (datapoints in 

RED) shown and everything else that is normal is green.

Next, let’s examine another dataset which is different from the current dataset. You 

will build a LSTM model and see if there are anomalies or not.


Download 26,57 Mb.

Do'stlaringiz bilan baham:
1   ...   157   158   159   160   161   162   163   164   ...   283




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish