LaborContractors.—Arepresentative,competitivelaborcontractoraggregatesspe- cializedlaborserviceslko,t,wherek∈[0,1]ando∈{p,i},intohomogeneouslaborlto
usingthetechnology
lo=□Z1 □λ
o,1 w
t lk,tλwdk ,o∈{p,i},λw≥1.
0
0 tt
demandfunctionforintermediatelaborandtheaggregatewageindex
ItsbudgetconstraintisR1Wko,tlko,tdk=Wolo,o∈{p,i}.Optimizationleadstothe
Wo!1−λw □Z
λw 1 □1−λ
1 w
lo= k,t o
t 0
k,tWo lto;Wto=Wk,,t1−λwdk ; o∈{p,i}.
MonopolyUnions.—Eachworkeroftypekisrepresentedbyamonopolyunionthat setsitsnominalwagerateWko,t,whereo∈{p,i}.AllunionsaresubjecttoCalvo frictionsinasimilarfashiontointermediatefirms.Afraction1−ξwofmonopoly
30
unionschoosesitswageoptimally.Theremainingfractionfollowsanindexationrule Wo=µ ιw1
k z∗
,t ππ t−−1ιwW ko,t−1,whereo∈{p,i},ι w∈(0,1),µ z∗≡z ∗/z −∗1isthesteady-state growthrateoftheeconomy,andµ z∗,tisashock.Anoptimizingunionmaximizes
X∞ so,s"Z1lko,1+σl #
,t+s
E t ξ wβ−ψ l dk+Λ to+s(1−τ l)W o˜ ,
w
t,t+sl
o ,},
1 +σ k,tΠ ∈{
k,t+s opi
s=0 0 l
Πt w,t+s ≡Q sπ w
k=1 w,t+k.Theoptimalwageconditionis
subjecttothedemandfunction.Here,Π ˜tw,t+s≡ Qsk=1µ z∗π˜ w,t+kandπ˜ ,t=π ιwπ t1−−1ιw.Let
X∞ W˜ !λ ˜ !λ
w σ
λ w
ow 1 −w l
ψλWo Π˜w 1−λw
Π ˜
0 =Et ξwsβo,slto+sWtoΠtw,t+s Λto+s(1−τl)Π˜tw,t+s− lw t t,t+s lo,σl
s=0 t t,t+s W˜ oWo t+s .
t t+s
TheoptimalwageW˜o≡
t Wko ,tiscommontoallworkerunions.Thatis,thereisone
optimalwageW ˜tpforpatientworkersandanotherW ˜tiforimpatientworkers.Rearranging,
o
t l w,t1−λ w(1+ σl)
WtoWto/PtFWo,t ,whereo∈{p,i}and
Kwo,t≡lo,1+ 1 (1+)
o
= ψK
w eobtainW
˜ h i 1−λw
σl λ
t +
ξwβo Et(π ˜w,t+1π− µ 1λwσlo ,
w,t+ 1z∗)−wKw,t+1
FW o,t ≡(1−τl)λw −1lt oPt Λt o+ξw βoEt
∗ λ wππ
w,t+1 t+1FW,t+1.
CapitalProducers.—Arepresentative,competitivecapitalproducerbuildsrawcapital accordingtoastandardtechnology
K¯t=(1−δ)K¯t−1+□1−Sk(ζi,tIt/It−1)□It,δ∈(0,1),
whereItisinvestment,Sk(t)isanincreasingfunctiondefinedbelow,andζi,tisashock
tothemarginalefficiencyofinvestment.Optimalinvestmentimplies
0=ΛtpQtk□1−Sk(t)−ζi,tItSk′(t)□−ΛtpPt pEpQk □It+1□2k′( .
+β tΛ ζ )
t
It−1 ΥµΥ,t t+1 t+1i,t+1ItSt+1
HousingProducers.—Housingisinfixedsupply.Thetotalhousingstockis
H¯=H¯tp+H¯ti.
31
B.5Government
ThemonetaryauthorityfollowsastandardTaylorrule
Rt −R=ρp (Rt−1 −R)+(1−ρp )□ απ (Et πt+1 −π)+αΔy (gy,t −µz∗ )□ +εt p,ρp ∈(0,1),
whereαπ,αΔy>0areweights,gy,tisquarterlyGDPgrowthindeviationfromsteady state,andεtpisamonetarypolicyshock.Thefiscalauthoritycollectstaxestofinance publicexpendituresGtandtransferlump-sumamountsTttohouseholds
Gt+Tt=τk([utrtk−a(ut)]Υ−tPt−δQtk−1)Kt−1+τl(Wtilti+Wtpltp)+τcPtCt.
GovernmentspendingisgivenbyGt=zt∗gt,wheregtisanexogenous-spendingshock.12
Transfersaredistributedtobothtypesofhouseholdsaccordingtotheirrespectiveshare intotallaborincome,T t=κT tp+(1−κ)T ti.
B.6AggregationandMarketClearing
Production.—Clearinginthegoodsmarketimposes
Y t=G t+C t+Υ −tµ −Υ1,tI t+a(u t)Υ −tK ¯t−1,
whereC t≡C tp+C tiistotalconsumption.WedefineGDPasY tgdp≡G t+C t+Υ −tµ −Υ1,tI t.
ImpatientHouseholds.—Asexplainedabove,allhomeownerschoosethesamelever- ageanddefaultthreshold.Perfectinsurancewithinthehouseholdensurestheybegin thenextperiodwiththesamelevelofnetworth,whichinaggregateisgivenby
N ti=[1−Γ i(ω¯ ti)]R thQ th−1H ¯ti−1,Γ i(ω¯ ti)≡[1−F i(ω¯ ti)]ω¯ ti+G i(ω¯ ti).
equalthequantitypurchasedbyentrepreneurs,K¯t=R1K¯
Entrepreneurs.—Thequantityofphysicalcapitalproducedbycapitalproducersmust
dj.Theaggregatesupply
ofcapitalservicesprovidedbyentrepreneursmustequalthedemandfromintermediate
0 j,t
0
Kt=Z 1Z ∞
firms,Kt =R 1Kj,t dj.Sinceωeha sunitmean ,tha tsupp lyis
ut+1ωeK¯j,tdFe(ωe)dj=ut+1K¯t.
00
Asexplainedabove,allentrepreneurschoosethesameleverage,defaultcutoffand utilization.Toprevententrepreneursfromaccumulatingnetworthtothepointwhere
12Thisshockcapturesbothchangesingovernmentexpendituresandchangesinnetexports.
32
theyarecompletelyself-financed,werequirethattheypayafixeddividendδeeach periodtopatienthouseholds.Wealsoincludeanequityshockγtethatshiftstheir
aggregatenetworth.Aggregatenetworthafterdividendpaymentsis
N te=γ te[1−Γ e(ω¯ te)]R tkQ tk−1K ¯t−1−δ eN te.
Banks.—Theaggregatebalancesheetofthebankingsectoris
B t≡B ti+B te=D t.
B.7SummaryofEquilibriumConditions
Westationarizeourmodelbydefiningthefollowingscaledvariables
b te=B te/(z t∗P t), h t=H ¯t/z t∗, n it=N ti/(z t∗P t), w ti=W ti/(z t∗P t),
b it=B ti/(z t∗P t), h ti=H ¯ti/z t∗, q th=Q th/P t, w tp=W tp/(z t∗P t),
c t=C t/z t∗, h tp=H ¯tp/z t∗, q˜ th=Q ˜th/P t, y z,t=Y t/z t∗,
c ti=C ti/z t∗, i t=I t/(z t∗Υ t), q tk=Q tkΥ t/P t, y t=Y tgdp/z t∗,
c tp=C tp/z t∗, k t=K ¯t/(z t∗Υ t), q˜ tk=Q ˜tkΥ t/P t, µ z∗,t=z t∗/z t∗−1,
d t=D t/z t∗, λ ti=Λ itP tz t∗, r tk=Υ tr˜ tk, zt∗=ztΥ(1−αα)t.
F wi,t=F Wi,tz t∗, λ tp=Λ tpP tz t∗, s t=S t/(z t∗P t),
F wp,t=F Wp,tz t∗, mc t=MC t/P t, t t=T t/(z t∗P t),
e
g t=G/ t, nt=Nt/(ztPt), tt=Tti/(zt∗Pt),
e ∗ i
t z∗
33
Pricesandwages
1
F pp,t=λ tpy z,t+ξ pβ pE t(π˜ t+1π t−11−λp,t+1p
+1 ) Fp,t+1. (1)
λ p,t+1
Kpp,t=λtpyz,tλp,tmct+ξpβpEt(π˜t+1πt−11−λ+1p
+1) p,tKp,t+1.(2)
−ξ− p.
p,t p tt) (1 p) Fp,t (3)
1 λ
F p=(1
w 1
−τl)λ−1λplp+ξβpµ1−λwEµ−1πλw−11−λw−1p
w,t w tt w z∗ tz∗,t+1w,t+1π˜w,t+1πt+1Fw,t+1. (4)
Kp=lp,1+σ+ pE(˜ 1 )
K p=□h1−ξ(π˜π −11−λ 1p,ti 1i 1−λp,t
λw
l p
,t t ξwβ tπw,t+1π
− µ (1+σl)
w w,t+1 z∗1−λwKw,t+1. (5)
−ξ pp
w (π˜w ,tπw,tµz∗)1−λw(1−ξw) wtFw,t. (6)
1 λ 1
Fi=(1−τl)λ−1 i 1
w
w, t wλti lt+ξwβi µ1−λ wEµ− πλ w−11−
λ wπ−1 i .
z z ,t+1w,t+1w,t+1t+1Fw,t+1 (7)
Ki=li1++ iE(˜ 1 )
∗ t ∗ π˜
Kw p,t=ψl −1h□1 −1 1□ −1i 1−λw(1+σl)
,σl λ w
w,t t ξwβ tπw,t+1π−t+1µz∗1−λ w(1+σl)Ki .
t+1 (8)
Kw i,t=ψ −1h□1−ξw(π˜w,tπw −1w, □ i w1,−λ(1+σ)
1 w
1−λw(1ξw)−1
l i
− wtFwi,t. (9)
l ,tµz∗)
Production,resourceconstraints,andgovernment
p.
t tt z∗,ttt−1 t/l
t (12)
rtk=rkexp(σa[ut−1]). (10) rtk=αεt(Υµz∗,tlt)1−α(utkt−1)α−1mct. (11) wp=(1−α)κmcεΥ−α(µ−1uk )αl1−α
wi
tεt−α (µ−1 α1 i
−α
z t−1)lt /lt . (13)
t =(1−α)(1−κ)mcΥ
∗ ,tutk
kt=(1−δ)Υ−1µ−1 k
z∗ ,tkt−1+[1−SΥµz∗,tζi,tit/it−1]it. (14)
Rt k=□ (1−τk)[ut rt k−a(ut )]+(1−δ)qt k□ Υ−1πt qt k,−1 k.
Υt z∗ ,tkt−1. (18)
c t=c tp+c ti. (19) lt=lp,κli,1−κ .
−1 +τδ(15)
R th=π tq th/q th−1.(16) y z,t=ε t(Υ −1µ −z∗1,tu tk t−1) αl t1−α−θ.(17) y z,t=g t+c t+µ −1,i t+a(u t)Υ −1µ −1
t t (20) h=h tp+h ti. (21) y t=g t+c t+µ −Υ1,ti t.(22)
gt=k□[urka(u)]Υ−1 −1qk□−1k+ l w
τ t− ii pp c
t t −πtδt−1µ∗,tt−1τwtlt+ tlt)+τct−tt. (24)
z (
Rt =R+ρp (Rt−1 −R)+(1−ρp )□ απ (Et πt+1 −π)+αΔy (gy,t −µz∗ )□ +εt p, (23)
0=λpqk□ k
i,titit−1−Υµz∗,tζi,tit/it−1S′ Υµz∗,tζi,tit/
t it−1 (25)
t 1−SΥµz∗,tζ/
−− 1p p −1pqk
2
, +βE(Υ
µ Υtλ t tµ z∗,t+1)λ t+1t+1ζ i,t+1Υµ z∗,t+1i t+1/i tS ′Υµ z∗,t+1ζ i,t+1i t+1/i t.
34
Patienthouseholds
0=(1+τ c)λ tp−µ z∗,tζ c,t/(µ z∗,tc tp−b cpc tp−1)+b cpβ pE tζ c,t+1/(µ z∗,t+1c tp+1−b cpc tp).(26)
0=1/h tp−λ tpq th+β pE tµ −z∗1,t+1λ tp+1q th+1. (27)
0=λ tp−β pE t(π t+1µ z∗,t+1) −1λ tp+1R t. (28)
0=λ tp−β pE t(π t+1µ z∗,t+1) −1λ tp+1R ts/ν t. (29)
Impatienthouseholds
0=(1+τ c)λ ti−µ z∗,tζ c,t/(µ z∗,tc ti−b icc ti−1)+b icβ iE tζ c,t+1/(µ z∗,t+1c ti+1−b icc ti). (30)
0=1+λ tib it−λ tiq thh ti[1+S h(µ z∗,tζ h,th ti/h ti−1)+µ z∗,tζ h,th tih ti,−−11S h′(µ z∗,tζ h,th ti/h ti−1)]
+β iE tµ −z∗1,t+1λ ti+1q th+1h tiζ h,t+1(µ z∗,t+1h ti+1/h ti) 2S h′(µ z∗,t+1ζ h,th ti+1/h ti) (31)
+β iE t(π t+1µ z∗,t+1) −1λ ti+1[1−Γ i(ω¯ ti+1)]R th+1q thh ti.
0=λ ti−β iE t(π t+1µ z∗,t+1) −1λ ti+1[R t+F i′(ω¯ ti+1)R ti+1(ω¯ ti+1−π t+1Q ˜th+1/[R th+1Q th])].
(32)
0=(1−τl)wtilti+(πtµz∗,t)−1[1−Γi(ω¯ti)]Rthqth−1hti−1+bit+tti−(1+τc)cti−qthhti.(33) 0=Rt−1bit−1−[1−Fi(ω¯ti)]Rtibit−1−Fi(ω¯ti)πtq˜thhti−1.(34)
ω¯ ti=R tib it−1/(R thq th−1h ti−1). (35)
n it=(π tµ z∗,t) −1[1−Γ i(ω¯ ti)]R thq th−1h ti−1. (36)
Entrepreneurs
E tΓ 1′(ω¯ te+1) 1
t [1−Γ1(ω¯t+1)]− ′ .(37)
R tΓe(ω¯te)+[πt+1q˜t k/(ΥRt kqk
L e
+1 +1 t
0 =Rt−1bte−1−[1−Fe(ω¯te)]Rtebte−1−Fe(ω¯te)Υ−1πtq˜tkkt−1. (38)
ω¯te=Rtebte−1/(Rtkqtk−1kt−1). (39)
nte=γte(πtµz∗,t)−1[1−Γe(ω¯te)]Rtkqtk−1kt−1−δente. (40)
Lte=qtkkt/nte. (41)
bte=qtkkt−nte. (42)
Financialsector
st=Fi(ω¯ti)µ−z∗1,tq˜thhti−1+Fe(ω¯te)Υ−1µ−z∗1,tq˜tkkt−1. (43)
0=(1−µh)Gi(ω¯ti)Rthqth−1hti−1+(1−µk)Ge(ω¯te)Rtkqtk−1kt−1−πtµz∗,tRtsst. (44)
qh iωi qk eωe
0=(1−µh)Rth t−1G(¯t)−(1−µk)ΥRk t−1G(¯t). (45)
q˜thFi(ω¯ti) tq˜tkFe(ω¯te)
e
2 t+1)
+1 t)−1]Fe ′(ω¯
R k e
0=E e e t+1
35
Do'stlaringiz bilan baham: |