I BOB. FARMATSEVTIKA MAHSULOTLARINI ISHLAB CHIQARISH VA SOTISHNI OPTIMAL REJALASHTIRISH MODELINI ISHLAB CHIQISHNING NAZARIY ASOSLARI. 1.1. Farmatsevtika mahsulotlarini ishlab chiqarish xususiyatlarini tahlil qilish 1.2. Rejalashtirishda qo'llaniladigan mavjud optimallashtirish usullarini tahlil qilish 1.3. Farmatsevtika korxonalarida qo'llanilishi mumkin bo'lgan ishlab chiqarish va sotishnni rejalashtirish modellarini tahlil qilish Birinchi bob bo’yicha xulosa II BOB. FARMATSEVTIKA MAHSULOTLARINI ISHLAB CHIQARISH VA SOTISHNI OPTIMAL REJALASHTIRISH USULLARI VA MODELLARINI ISHLAB CHIQISH 2.1. Talabning vaqtga bog'liqligini topish usulini ishlab chiqish 2.2. Noravshan dasturlash asosida farmatsevtika mahsulotlarini ishlab chiqarish va sotishni optimal rejalashtirish modelini yaratish. 2.3. Savdoni rejalashtirish uchun yevristik algoritmni ishlab chiqish Ikkinchi bob bo’yicha xulosa III BOB. FARMATSEVTIKA MAHSULOTLARINI ISHLAB CHIQARISH VA SOTISHNI OPTIMAL REJALASHTIRISH UCHUN DASTURIY VOSITALARNI ISHLAB CHIQISH VA SINOVDAN O'TKAZISH 3.1. Dasturiy vositalar interfeysini ishlab chiqish masalalari 3.2. Model va usullarning ishlashi uchun algoritmlar 3.3. Dissertatsiya tadqiqoti natijalarini aprobatsiya qilish Uchinchi bob bo’yicha xulosa Xulosa
ADABIYOTLAR RO'YXATI
1.J. Jordan, S. Helwig, R.Wanka. Social interaction in particle swarm optimization, the ranked FIPS, and adaptive multi-swarms. // Proceedings of the 10th annual conference on Genetic and evolutionary computation. - Atlanta, USA, ACM, 2008, pp. 49 - 56.
2. K. Veeramachaneni, Th. Peram, Ch. Mohan, L. A. Osadciw. Optimization Using Particle Swarm with Near Neighbor Interactions. // Lecture Notes Computer Science – Springer Verlag, 2003.
3. J. Kennedy, R. Mendes. Population structure and particle swarm
performance. // Proceedings of the 2002 Evolutionary Computation Congress. - Washington, IEEE Computer Society, pp. 1671 – 1676.
4. B. B. Воеводин, Bл. B. Воеводин. Параллельные вычисления. - БХВ-Петербург,2002.
5. J. Kennedy, R. Mendes. Neighborhood topologies in fully informed and best-of neighborhood particle swarms. // Systems, Man, and Cybernetics. - 2006, v. 36, pp. 515—519.
6. W. Elshamy, H.M. Emara, A. Bahgat. Clubs-based Particle Swarm Optimization. //Swarm Intelligence Symposium. - 2007, pp. 289 – 296.
7. Reynolds R.G., Chung Ch.-J. Function optimization using evolutionary programming with self-adaptive cultural algorithms // Lecture Notes on Artificial Intelligence. Springer-Verlag Press. 1997. P. 184-198.
8. Reynolds R. G., Chung Ch.-J. Knowledge-Based Self-Adaptation in Evolutionary Search // International Journal of Pattern Recognition and Artificial Intelligence. 2000. Vol 14, pp. 19-33.
9. P.E. Gill, W. Murray, Quasi-newton methods for unconstrained optimization, IMA. J. Appl. Math., vol. 9, pp. 91–108, 1986.
10. A. Nelder, R. Mead, A simple method for function optimization, Comput. J. 7 (1965) 308–313.
11. J.H. Holland, Adaption in Natural and Artificial Systems, University of Michigan Press, Ann Arbor, MI, 1975.
12. J. Kennedy, R. Eberhard, Particle swarm optimization, in: Proceedings of IEEE International Conference on Neural Networks, 4, 1995, pp. 1942–1948.
13. D. Karaboga, An Idea Based on Honey Bee Swarm for Numerical Optimization, Technical Report-TR06, Oct, 2005.
14. R.G. Reynolds, B. Peng, Knowledge Learning and Social Swarms in Cultural Systems. Journal of Mathematical Sociology, vol. 29, pp. 118, 2005
15. M. Daneshyari, G.G. Yen, Constrained multiple-swarm particle swarm optimization within a cultural framework, IEEE Transactions on Systems, Man, Cybernetics A, vol. 18, pp.1–16, 2011.
16. A. Naik, S. C. Satapathy, A. S. Ashour, N. Dey, Social group optimization for global optimization of multimodal functions and data clustering problems, Neural Computing and Applications (2016) pp.1–17.
17. А.П.Карпенко. Современные алгоритмы поисковой оптимизации. Алгоритмы, вдохновленные природой. Москва, Изд-во МГТУ им. Баумана, 2017, с.446.
18. K. D. Koper, M. E. WY session, D. A. Wiens, Multimodal function optimization with a niching genetic algorithm: A seismological example, Bulletin of the Seismological Society of America 89 (4) (1999) pp.978–988.
19. A. Y. Goharrizi, R. Singh, A. M. Gole, S. Filizadeh, J. C. Muller, R. P. Jayasinghe, a parallel multimodal optimization algorithm for simulation based design of power systems, IEEE Transactions on Power Delivery 30 (5) (2015) pp.2128–2137.
20. W. Chu, X. Gao, S. Sorooshian, A new evolutionary search strategy for global optimization of high-dimensional problems, Information Sciences (22) (2011) pp.4909–4927.
21. Бычков Е.Д. Приложение теории нечетких (Fuzzy) множеств в математических моделях систем связи. Исследования и материалы: Приложение к журналу «Омский научный вестник» // Бычков Е.Д., Салахутдинов Р.З., Лендикрей В.В. – Омск: ОГМА, 2000. – 188 с.
22. Кузнецов В.Ю. Методы покрытия многосвязных ортогональных многоугольников для задач оптимального размещения сенсоров в области мониторинга: диссертация канд. тех. наук. Уфим. гос. авиац.-тех. университет, Уфа, 2009.
Internet resurslari
Scikit-lear user guide: Release 0.21.3//2019 http://technomag.edu.ru/doc/116072.html
http://www.moluch.ru/. karpenko@pk6.bmstu.ru
Numpy docs.numpy.com
Seaborn docs.seaborn.com
PyQt docs.pyqt.com
Do'stlaringiz bilan baham: |