8-variant
a) x
1
, x
2
, …,x
n
massivning manfiy, musbat va nol elementlarining sonini aniqlang.
b) A(3,3) massiv berilgan. Uning satr elementlari yig’indisidan yangi bir o’lchovli
massiv hosil qiling.
c)
)
1
2
(
)
1
2
(
)
2
(
+
+
+
+
=
x
P
y
P
x
P
B
; bu yerda
a
a
a
P
2
)
1
(
)
(
2
+
=
.
d)
).
2
,
,
max(
)
,
2
,
max(
)
,
,
2
max(
z
y
x
z
y
x
z
y
x
t
+
=
9-variant
a)
∏
∑
=
=
+
=
m
k
k
n
i
i
Y
m
x
n
S
1
1
1
1
ni hisoblang.
b) A(3,3) massiv berilgan.Uning ustun elementlari yig’indisidan bir o’lchovli
massiv hosil qiling.
c)
)
(
ln
)
1
2
(
15
)
5
,
0
(
x
t
x
t
e
Z
t
+
+
+
=
−
; bu yerda
1
3
2
)
(
2
+
+
=
a
a
a
t
d)
)!
2
(
)!
2
(
)!
2
(
!
2
2
m
n
m
n
m
n
n
t
−
+
−
+
+
=
10-variant
a) x
1
, x
2
, …,x
n
massiv berilgan. Uning toq elementlaridan U, juft elementlaridan Z
massiv hosil qiling.
b) B(3,3) massiv berilgan. Uning birinchi va uchinchi ustun elementlarini 3 ga
ko‘paytirib yangi massiv hosil qiling.
c)
1
6
10
)
1
6
sin(
)
1
6
cos(
1
)
1
6
ln(
2
2
2
2
+
+
+
+
+
+
+
+
+
+
+
=
x
x
t
t
z
z
y
y
y
d)
).
,
,
(
)
,
,
(
)
,
,
(
c
b
a
EKUK
z
y
x
EKUK
k
n
т
EKUK
T
+
=
11-variant
a) x
1
, x
2
, …,x
20
massiv berilgan. Toq elementlardan U, juft elementlardan Z
massiv hosil qiling.
b) B(3,3) massiv berilgan. Uning satr elementlarini kvadratga ko‘tarib yangi massiv
hosil qiling.
31
c)
)
2
(
cos
1
94
,
9
1
8
,
1
2
)
2
(
cos
1
2
2
y
x
e
xy
соs
В
y
x
+
+
−
+
+
+
=
+
+
−
d)
).
,
,
(
)
,
,
(
)
,
,
(
c
b
a
EKUB
z
y
x
EKUB
k
n
т
EKUB
T
+
=
12-variant
a) x
1
, x
2
,…x
n
massivning musbat elementlaridan
i
y
, manfiy elementlaridan
i
z
,
massiv hosil qiling.
b)
( )
4
,
4
A
va
( )
4
,
4
B
massivlar berilgan
C
B
A
B
A
C
.
−
+
⋅
=
massivini hosil qiling.
c)
(
) (
) (
)
(
)
x
x
f
x
y
x
f
x
x
f
y
x
x
x
f
Z
2
2
cos
,
sin
,
cos
,
sin
,
cos
sin
+
−
+
+
+
+
=
bu yerda
( )
<
−
≤
≤
−
>
+
=
0
4
,
1
4
0
,
1
4
,
,
agar
d
t
agar
t
d
agar
t
d
t
d
f
d) n ta muntazam besh burchak tomonlari bilan berilgan. Bu besh burchakka tashqi
chizilgan doira yuzlarini hisoblang va ularni kamayish tartibida joylashtiring.
13-variant
a) z
1
, z
2
,…,z
n
massiv elementlarini kamayib borish tartibida joylashtiring.
b) A(N,M) matritsa har bir satrining eng katta va eng kichik elementlarini, so‘ngra
ularning yig‘indisi va ko‘paytmasini hisoblang.
c)
za
a
z
xz
z
x
yz
z
y
xy
y
x
R
sin
sin
sin
sin
2
2
2
2
2
2
2
2
+
+
+
+
+
+
+
+
+
+
+
=
d) n ta muntazam uchburchak berilgan. Bu uchburchakka ichki chizilgan doira
yuzlarini hisoblang va ularni kamayish tartibida joylashtiring.
14-variant
a) x
1
, x
2
, … ,x
n
massivning manfiy elementlarining eng kattasi va musbat
elementlarining eng kichigini aniqlang.
b) A(N,M) matritsa har bir ustunning eng katta va eng kichik elementlarini, so‘ngra
ularning yig‘indisi va ko‘paytmasini toping.
c)
(
)
(
)
(
) (
)
+
+
+
−
−
+
+
+
=
y
z
y
x
T
z
y
x
T
z
y
x
T
x
y
z
x
T
B
,
2
,
,
,
3
2
2
2
bu yerda,
( )
≤
−
>
+
=
b
a
agar
b
a
b
a
agar
b
a
b
a
T
,
2
,
,
3
2
2
2
d) n ta muntazam uchburchak tomonlari bilan berilgan, bu uchburchakka tashqi
chizilgan aylana radiuslarini hisoblang va ularni kamayib borish tartibida
joylashtiring.
15-variant
a) x
1
, x
2
,…,x
n
massiv berilgan.
(
)
(
)
∑
∏
−
=
−
+
−
=
m
n
r
k
k
n
k
x
r
ctg
n
x
n
m
Z
1
1
sin
ni hisoblang.
32
b) A(N,M) matritsa har bir ustun elementlarini eng kattasini toping. Topilgan
elementlar ichida eng kichigini va uning tartib nomerini aniqlang.
c)
(
)
(
)
(
)
(
)
(
)
≤
+
>
+
=
5
,
,
min
,
5
,
,
min
5
,
,
min
,
,
,
min
,
,
min
3
2
1
3
2
1
3
2
1
c
b
a
agar
t
t
t
c
b
a
agar
z
z
z
y
y
y
A
d) n ta uchburchakning uchlari koordinatalari bilan berilgan. Bu uchburchaklarga
ichki chizilgan doira yuzlarini hisoblang va ularni kamayib borish tartibida
joylashtiring.
16-variant
a) x
1
, x
2
,…,x
n
sonlar berilgan.
∑
=
=
n
k
k
x
n
M
1
1
va
(
)
2
1
2
1
1
−
−
=
∑
=
n
k
k
M
x
n
D
larni hisoblang
b) A(20, 20) matrisaning bosh diagonalining katta elementini va u turgan ustunni
aniqlang.
c)
(
)
(
)
(
)
(
)
y
P
y
P
y
P
y
P
U
2
1
2
1
1
,
0
1
2
,
3
−
+
+
+
+
=
; bu yerda
( ) ∏
∞
=
=
1
2
!
k
k
x
x
P
d)
(
)
(
)
(
)
(
)
1
,
3
,
,
2
max
,
,
,
max
4
,
,
2
,
3
min
,
,
,
min
+
+
+
+
=
d
c
b
a
d
c
b
a
c
b
a
d
c
b
a
U
17-variant
a) x
1
, x
2
, … ,x
55
sonlar berilgan: x
1
(x
2
+x
3
) (x
4
+x
5
+x
6
)…(x
46
+x
47
+…,x
55
) ni
hisoblang.
b) S(M, N) kvadrat matritsa bosh diagonalining barcha elementlarini, so‘ngra
musbat va manfiy elementlarining yig‘indisini toping.
c)
( )
(
)
(
)
(
)
a
b
c
a
c
b
b
a
c
b
a
b
a
U
+
+
+
+
+
+
+
=
2
2
,
2
max
,
min
,
2
max
,
min
.
d)
(
) (
)
( )
(
)
(
)
!
1
!
3
!
!
1
3
!
2
2
2
2
+
+
+
−
+
−
+
+
=
m
n
n
m
nm
n
n
m
U
.
18-variant
a) a
1
, a
2
, ... ,a
55
massiv berilgan. Massiv elementlarining eng kattasini 1 soni bilan,
eng kichigini esa -1 soni bilan almashtiring.
b) A(N,M) har bir satrining eng katta elementini toping va ularning indeks tartib
raqamini aniqlang.
c)
( )
(
) (
)
b
a
f
b
a
f
b
a
f
U
,
1
,
,
2
2
2
−
+
+
=
, bu yerda
( )
+
≤
≤
+
>
>
+
=
xollarda
an
qo
t
u
t
u
agar
t
u
t
г
agar
t
u
t
u
f
lg
,
0
,
0
,
0
,
0
,
,
2
2
2
2
33
d)
(
)
(
)
(
)
k
m
k
n
n
m
EKUB
n
m
k
n
m
EKUB
m
k
n
n
m
EKUB
U
+
+
+
+
+
+
+
=
,
,
,
,
,
,
19-variant
a)
∑ ∑
=
=
=
m
n
n
k
n
k
x
Z
1
1
2
sin
bu yerda
m
x
x
x
,...,
,
2
1
massiv berilgan.
b) A(N,M) matritsa har bir satr elementlari yig‘indisini hisoblang va ulardan eng
kattasi va eng kichigini toping.
c)
(
)
( )
(
)
(
)
x
y
x
f
y
x
f
b
a
f
y
x
f
Z
,
,
1
,
,
+
+
+
+
+
=
, bu yerda
( )
+
−
−
≤
+
>
+
=
xollarda
an
qo
t
u
u
agar
t
u
u
agar
t
u
t
u
f
lg
,
1
2
1
,
0
,
2
,
2
d) n ta uchburchakning uchlari koordinatalari bilan berilgan. Bu uchburchakning
yuzini hisoblang va ulardan kichigini toping.
20-variant
a) x
1
, x
2
, … ,x
n
massivning manfiy elementlarining eng kattasini toping.
b) A(N,M) matritsa har bir ustuni elementlari ko‘paytmasini hisoblang va ularning
eng kichigi va kattasini aniqlang.
c)
(
)
(
)
(
)
N
k
n
m
n
m
n
m
EKUB
k
m
k
n
m
n
EKUB
n
n
m
n
EKUB
P
∈
+
+
+
+
+
+
=
,
,
,
,
,
,
,
,
,
2
2
d) n ta muntazam oltiburchak o‘z tomonlari bilan berilgan. Bu oltiburchaklarga
chizilgan aylana radiuslarini hisoblang va ularning kattasini aniqlang.
21-variant
a) A(n) massiv berilgan. Uning manfiy elementlarini kvadratga ko‘tarib,
musbatlarini 2 ga bo‘lib, yangi massiv hosil qiling.
b) V(3,3) massiv berilgan. Uning har bir satr elementlari yig‘indisining o‘rta
arifmetigi va geometrigini toping.
c)
,
)
2
(
)
(
)
(
2
2
2
ab
th
b
a
th
b
a
th
tha
Z
+
−
−
+
=
bu yerda
x
x
x
x
e
e
e
e
x
th
−
−
+
−
=
)
(
d)
.
)
,
,
min(
)
,
,
min(
)
,
,
min(
)
,
,
min(
3
2
1
3
2
1
3
2
1
3
2
1
t
t
t
x
x
x
b
b
b
a
a
a
S
+
+
=
Do'stlaringiz bilan baham: |