Виды УЗИ
УЗИ – универсальный диагностический метод. Обследование позволяет изучить работоспособность почти всех внутренних органов. Врачи выделяют следующие разновидности исследования:
дуплексное;
абдоминальное;
Существует много видов УЗИ, для этого применяются разные датчики
вагинальное;
денситометрия;
диагностика суставов;
триплексное УЗИ сосудов;
УЗИ мягких тканей;
трансабдоминальное УЗИ;
УЗДГ.
Вид ультразвуковой диагностики подбирается из индивидуальных особенностей. Доктор учитывает жалобы пациента и предварительный диагноз. После этого выбирается зона обследования. Преимущества ультразвуковой диагностики
УЗИ – современный диагностический метод. Все виды ультразвукового исследования популярны благодаря целому ряду преимуществ.
Из этого видео вы сможете узнать о принципах проведения и особенностях УЗИ диагностики:
К плюсам обследования относят:
доступную стоимость;
отсутствие противопоказаний;
полную безопасность;
возможность обследования всех имеющихся внутренних органов;
возможность повторной диагностики через небольшой промежуток времени;
малую длительность процедуры;
возможность проведения обследования в профилактических целях.
Несмотря на полную безопасность, проведение УЗИ возможно только по назначению врача.
9. Силы, действующие между слоями и направленные по касательной к поверхности слоев, называются силами внутреннего трения или вязкости. Цельная кровь (суспензия эритроцитов в белковом растворе - плазме) является неньютоновской жидкостью вследствие агрегации эритроцитов.
Эритроцит в норме имеет форму двояковогнутого диска диаметром около 8 мкм. Он может существенно менять свою форму, например при различной осмолярности среды .
В неподвижной крови эритроциты агрегируют, образуя так называемые «монетные столбики», состоящие из 6-8 эритроцитов. Электронно-микроскопическое исследование тончайших срезов монетных столбиков выявило параллельность поверхностей прилежащих эритроцитов и постоянное межэритроцитарное расстояние при агрегации.
При протекании крови по капиллярам агрегаты эритроцитов распадаются и вязкость падает.
Вживление специальных прозрачных окошек в кожные складки позволило сфотографировать течение крови в капиллярах.
Деформируясь, эритроциты могут продвигаться один за другим в капиллярах диаметром всего 3 мкм. Именно в таких тонких капиллярных сосудах и происходит газообмен между кровью и тканями.
Вблизи стенки капилляра образуется очень тонкий слой плазмы, который играет роль смазки. Благодаря этому сопротивление движению эритроцитов уменьшается.
10. Вискозиметрия — раздел физики, посвящённый изучению методов измерения вязкости. Наиболее распространены три метода измерения вязкости газов и жидкостей:
по расходу в капилляре — основано на законе Пуазейля
по скорости падающего шара — закон Стокса
по вращающему моменту для соосных цилиндров — из закона течения жидкости между соосными цилиндрами (течение Тейлора)
При измерении вязкости жидкости различают ньютоновские и неньютоновские жидкости. Ньютоновская жидкость подчиняется при своём течении закону вязкого трения, то есть её вязкость зависит только от температуры жидкости и не зависит от скорости сдвига (по крайней мере в области ламинарного потока). Практическим следствием этого является одинаковое значение вязкости при одной и той же температуре для одной и той же жидкости даже на вискозиметрах разных систем. Неньютоновские жидкости отклоняются от закона Ньютона. Среди них различают тиксотропные и нетиксотропные жидкости. Тиксотропные жидкости по мере перемешивания изменяют свою вязкость.
Закон Пуазёйля (иногда закон Хагена — Пуазёйля) — это физический закон так называемого течения Пуазёйля, то есть установившегося течения вязкой несжимаемой жидкости в тонкой цилиндрической трубке. Закон установлен эмпирически в 1839 году Г. Хагеном, а в 1840—1841 годы — независимо Ж. Л. Пуазёйлем. Теоретически объяснён Дж. Г. Стоксом в 1845 году.
При установившемся ламинарном движении вязкой несжимаемой жидкости сквозь цилиндрическую трубу круглого сечения секундный объёмный расход прямо пропорционален перепаду давления на единицу длины трубы и четвертой степени радиуса и обратно пропорционален коэффициенту вязкости жидкости.
Формула используется для определения вязкости жидкостей. Другим способом определения вязкости жидкости является метод, использующий закон Стокса.
11. Гидравлическое сопротивление – это сопротивление движению потока рабочей среды, которое оказывается со стороны трубопроводной системы и оценивается количеством потерянной удельной энергии, безвозвратно расходуемой на работу сил трения. При этом гидропотери могут возникать в результате:
Трения по длине. Даже на прямых отрезках трубопровода создаётся противодействие движущемуся потоку. Это возникает на фоне появления сил вязкого трения. Причём с увеличением длины прямолинейного участка повышается сопротивление внутри трубопровода на данном участке.
Ньютоновские жидкости – в этих жидкостях вязкость не зависит от градиента скорости. Они подчиняются уравнению Ньютона (вода, водные растворы, низкомолекулярные органические соединения ‑ этиловый спирт, ацетон).
Неньютоновские жидкости – это жидкости, для которых вязкость зависит от режима течения и градиента скорости. Это высокомолекулярные органические соединения, суспензии, эмульсии. Эти жидкости состоят из сложных и крупных молекул, которые могут образовывать пространственные структуры. Этот вид вязкости много больше, чем у ньютоновских жидкостей. Здесь работа затрачивается не только на преодоление сил трения между слоями, но и на разрушение структурных образований.
Цельная кровь (суспензия элементов в белковом растворе – плазме) является неньютоновской жидкостью. Ее вязкость тем выше, чем медленнее она течет. В основном это обусловлено агрегацией эритроцитов. В неподвижной крови эритроциты образуют, так называемые «Монетные столбики». При быстром течении крови агрегаты эритроцитов распадаются и вязкость уменьшается.
12. а) Ламинарное течение. Течение крови в артериях в норме является ламинарным, т.е. упорядоченным.
Особенностями ламинарного течения являются следующие: Перемешивания между отдельными слоями текучей субстанции не существует. Слои, находящиеся ближе к оси трубы, движутся с большей скоростью, чем те, которые расположены на ее периферии. Этот факт связан с наличием сил трения между молекулами жидкости и внутренней поверхностью трубы.
Do'stlaringiz bilan baham: |