Основые понятия и законы фильтрации нефти, газа и воды особенности движения флюидов в природных пластах


ПОРИСТАЯ СРЕДА И ЕЕ ФИЛЬТРАЦИОННЫЕ ХАРАКТЕРИСТИКИ



Download 61,18 Kb.
bet2/3
Sana31.05.2022
Hajmi61,18 Kb.
#622512
TuriЗакон
1   2   3
Bog'liq
отработка-1

2. ПОРИСТАЯ СРЕДА И ЕЕ ФИЛЬТРАЦИОННЫЕ ХАРАКТЕРИСТИКИ

Под пористой средой подразумевается множество твердых частиц, тесно прилегающих друг к другу, сцементированных или несцементированных, пространство между которыми (поры, трещины) может быть заполнено жидкостью или газом.


Поровое пространство природного пласта ввиду сложности и нерегулярности его структуры можно рассматривать как систему с большим числом однородных элементов, слабо связанных между собой. Из статистической физики известно, что такие системы могут быть описаны как некоторые сплошные среды, свойства которых не выражаются через свойства составляющих элементов, а являются усредненными характеристиками достаточно больших объемов среды. Таким образом, в теории фильтрации, как и в гидродинамике, принимается, что пористая среда и насыщающие ее флюиды образуют сплошную среду, т. е. заполняют любой выделенный элементарный объем непрерывно. Это накладывает определенные ограничения на понятие элементарного объема порового пространства. Под элементарным объемом понимают объем, в котором заключено большое число пор и зерен, так что он достаточно велик по сравнению с размерами пор и зерен породы. Для него вводятся локальные усредненные характеристики системы флюид-пористая среда. В применении к меньшим объемам выводы теории фильтрации становятся несправедливыми.
Если объем пор при изменении давления жидкости в них не изменяется, то такая пористая среда считается недеформируемой. Если же изменением объема порового пространства пренебречь нельзя, то такую пористую среду следует рассматривать как упругую. Плотные песчаники или известняки, перебитые мелкими трещинами, образуют трещиновато-пористую среду.
Одна из важнейших характеристик пористой среды — пористость, измеряемая коэффициентом пористости.
Коэффициент пористости m есть отношение объема пор Vм в некотором элементе пористой среды ко всему объему V данного элемента:

m = Vм/V (1)


Наряду с пористостью иногда вводится понятие просветность (площадной пористости), под которой понимается отношение площади просветов wn в некотором сечении пористой среды ко всей площади этого сечения w.


Просветность измеряется коэффициентом просветности

N= (2)


Можно доказать, что в данной точке пласта просветность не зависит от выбора направления сечения и равна пористости (n = m)


Коэффициент пористости одинаков для геометрически подобных сред; он не характеризует размеры пор и структуру порового пространства. Поэтому для описания пористой среды необходимо ввести также некоторый характерный размер порового пространства. Существуют различные равноценные способы определения этого размера. Естественно, например, за характерный размер принять некоторый средний размер порового канала d или отдельного зерна пористого скелета.
Первые теоретические исследования порового пространства проводились с помощью идеализированных моделей грунта, называемых идеальным и фиктивным грунтами. Под идеальным грунтом понимается модель пористой среды, поровые каналы которой представляют собой пучок тонких цилиндрических трубок (капилляров) с параллельными осями. Фиктивным грунтом называется модель пористой среды, состоящая из шариков одинакового диаметра. В конце прошлого столетия американский гидрогеолог Ч. Слихтер развил упрощенную теорию фильтрации, позволяющую сравнивать движение жидкости по поровым каналам с течением жидкости по цилиндрическим трубкам. Основываясь на модели фиктивного грунта, он рассмотрел также геометрическую задачу, позволяющую связать пористость с углами, образованными радиусами соприкасающихся шаров, моделирующих пористую среду, при их различной упаковке.
Простейшим геометрическим параметром, характеризующим размер порового пространства, является эффективный диаметр dэф частиц грунта. Его можно определить в результате механического анализа грунта. Эффективным диаметром частиц, слагающих реальную пористую среду, называется такой диаметр шаров, образующих фиктивный грунт, при котором гидравлическое сопротивление, оказываемое фильтрующейся жидкости в реальном и эквивалентном фиктивном грунте, одинаково. Однако на практике эффективный диаметр зерен dэф определить трудно (особенно для сцементированных песчаников). Поэтому теория Ч. Слихтера не нашла широкого практического применения.
Для определения геометрической структуры пористой среды, существенно влияющей на фильтрационные параметры, кроме пористости и эффективного диаметра, нужны дополнительные объективные характеристики. Определенную информацию о микроструктуре порового пространства дают кривые распределения размеров пор и зерен. Поэтому предпринимались многочисленные попытки определения геометрических и гидродинамических характеристик пористой среды на основе кривых распределения. Однако зависимости характеристик пористой среды от параметров кривых распределения не могут быть универсальными.



Download 61,18 Kb.

Do'stlaringiz bilan baham:
1   2   3




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish