f
k
( )
t
( )
orginal k=1,2,3..n bo'lsa
f
k
( )
t
( )
P
k
÷
F P
( )
P
k 1
−
f 0
( )
−
P
k 2
−
f ' 0
( )
....
−
⋅
−
f
k 1
−
(
)
0
( )
−
bo'ladi. Hususan:
f' t
( )
P
÷
F P
( )
⋅
f 0
( )
−
6. Orginalni integrallash hossasi
0
t
τ
f
τ
( )
⌠
⌡
d
1
p
÷
F P
( )
7. Tasvirni diffrensiallash hossasi. Tasvirni argument P bo'yicha diffrensiallasak orginal -t ga
ko'paytiriladi.
F
n
( )
P
( )
1
−
(
)
n
÷
t
n
f t
( )
P
∞
p
F p
( )
⌠
⌡
d
1
t
÷
f t
( )
8. Tasvirni integrallash hossasi.
9. Tasvirlarni ko'paytirish hossasi. Borel teoremasi.
Agar
f t
( )
F P
( )
÷
va
g t
( )
G P
( )
÷
bo'lsa
F P
( ) G P
( )
⋅
f
÷
g
×
0
t
τ
f
τ
( )
g t
τ
−
(
)
⌠
⌡
d
÷
f
g
×
simvol f(t) va g(t) funksiyalarni kompozitsiyasi (o'ramasi) deb ataladi.
10. Dramel integrali. Agar
f t
( )
F P
( )
÷
va
g t
( )
G P
( )
÷
bo'lsa
P F P
( )
⋅
G P
( )
⋅
f 0
( )
÷
g t
( )
f'
g
×
(
) t
( )
+
bo'ladi. Bu yerda
f'
g
×
(
) t
( )
0
t
τ
t
f t
τ
−
(
)
g
τ
( )
d
d
⌠
⌡
d
Edit by Homidjonov Shavkat. Copyright 2007 All rights reserved.
Orginal hisob va uning bazi tadbiqlari
Laplas almashtirishlari va hossalari:
Agar haqiqiy o'zgaruvchi f(t) funksita uchun quyidagi shartlar bajarilsa:
1. t<0 da f(t)=0
f t
( )
M e
S t
⋅
⋅
<
bo'lsa
2. shunday M>0 va S>0 o'zgarmas sonlar mavjud bo'lsaki va
3. f(t) bo'lakli-uzluksiz yani chekli intervalda chekli sondagi birinchi tur uzilish nuqtalariga ega
bo'lsa, u vaqtda quyidagi hosmas integralga Laplas almashtirishlari deyiladi va bunday yoziladi:
F P
( )
0
∞
t
e
p
−
t
⋅
f t
( )
⌠
⌡
d
÷
F(P) funksiya f(t) funksiyaning laplas tasviri deb ataladi. f(t) funksiya esa orginal deb
aytiladi
Asosiy hossalari:
1. Tasvirning chiziqlilik hossasi:
Ixtiyoriy
c
k
k=1,2,3..n o'zgarmas sonlar uchun quyidagi tenglik o'rinli:
1
n
k
C
k
f t
( )
k
∑
=
1
n
k
C
k
F
k
P
( )
∑
=
÷
2. Orginal argumentni musbat songa ko'paytirish xossasi. O'xshashlik teoremasi:
Har qanday o'zgarmas musbat a>0 son uchun quyidagi tenglik o'rinli
f at
(
)
1
a
F
P
a
÷
3. Orginal argumentni musbat
τ
>0 vaqtga kechikish xossasi. Kechikish teoremasi:
Agar orginal f(t-
τ
) ga kechiksa tasvir
e
p
−
τ
⋅
ga ko'paytiriladi:
f t
τ
−
(
)
e
p
−
τ
⋅
F P
( )
(
)
÷
4. Tasvirning kechikish hossasi. Siljish teoremasi: Agar orginal
e
α
t
ga ko'paytirilsa
α
ga kechikadi:
e
α
t
f t
( )
(
)
F P
α
−
(
)
÷
5. Orginalni difrensiallash hossasi. Agar f(t) va uning hosilalari
F(P)
f(t)
F(P)
f(t)
t
2
ω
sin
ω
t
p
p
2
ω
2
+
(
)
2
2
t
1
cos
α
t
−
(
)
ln
p
2
α
2
+
p
2
1
t
e
β
t
e
α
t
−
(
)
ln
p
α
−
p
β
−
1
t
sin
ω
t
arctg
ω
p
⋅
t
n 1
−
n
1
−
(
)
!
1
p
n
1
ω
3
ω
t
sin
ω
t
−
(
)
1
p
2
p
2
ω
2
+
(
)
cos t
( )
2
p
2
2
+
p p
2
4
+
(
)
sin t
( )
2
2
p p
2
4
+
(
)
1
ω
2
1
cos
ω
t
−
(
)
1
p p
2
ω
2
+
(
)
e
α
t
−
α
t
+
1
−
α
2
1
p
2
p
α
+
(
)
1
1
α
t
+
(
)
e
α
t
−
−
α
2
1
p p
α
+
(
)
2
ch
ω
t
p
p
2
ω
2
−
cos
ω
t
p
p
2
ω
2
+
tg
1
ω
k
2
ω
2
+
⋅
sin
ω
t
φ
+
(
)
⋅
p
k
+
p
2
ω
2
+
k
α
−
(
)
e
α
t
−
k
β
−
(
)
e
β
t
−
−
β α
−
p
k
+
p
α
+
(
)
p
β
+
(
)
1
αβ
β
e
α
t
−
α
e
β
t
−
−
αβ β α
−
(
)
−
1
p p
α
+
(
)
p
β
+
(
)
e
α
t
−
cos
ω
t
p
α
+
p
α
+
(
)
2
ω
2
+
e
α
t
−
sin
ω
t
ω
p
α
+
(
)
2
ω
2
+
k
α
−
(
)
t
1
+
e
α
t
−
p
k
+
p
α
+
(
)
2
e
α
t
−
e
β
t
−
−
(
)
β α
−
1
p
α
+
(
)
p
β
+
(
)
sh
ω
t
ω
p
2
ω
2
−
sin
ω
t
ω
p
2
ω
2
+
t
n
n
!
e
α
t
−
1
p
α
+
(
)
n 1
+
t
n
n
!
p
n 1
+
t
1
p
2
a
t
1
p
lna
−
e
α
t
−
1
e
α
+
1
1
p