Shartga ko‘ra S
acoc
= 16 sm
2
.
Bundan A
B
=
16
=4 sm. to‘g‘ri burchakli
SOE uchburchakda
0
ekanligidan. N = OS =OE · ctg
=
2
АВ
ctg
= 2 ctg30
0
=
2
3
. U holda piramida hajmi
V =
3
1
S
acoc
· SO =
3
1
· 16 · 2
3
=
3
3
32
.
Javob:_α_=_arc_cos_(tg_2__)._8_–_misol.'>Javob:
3
3
32
6 – misol.
Oltiburchakli piramidaning balandligi 8 m. Uning uchidan 3m masofada
asosiga parallel tekislik bilan kesilgan. Hosil bo‘lgan kesim yuzi 4 m
2
. Piramidaning
hajmini toping.
Yechilishi:
Shartga ko‘ra N =8m, h=3m, S
kec
= 4m
2
, piramidaning parallel kesimlari yuzlari
haqidagi teoremadan:
S
S
acoc
acoc
=
h
H
2
2
. Bu yerdan S
acoc
=
9
256
(m
2
). U holda piramida hajmi V =
3
1
S
acoc
· H =
27
2048
(m
3
).
Javob:
27
2048
(m
3
).
7 – misol.
To‘rtburchakli muntazam piramidaning uchidagi tekis burchagi φ ga teng.
Yon yog‘ining asos tekisligi bilan hosil qilgan burchagini toping.
Yechilishi:
Shartga ko‘ra
asosi kvadrat. α =
topish talab etilgan. BSE to‘g‘ri burchak-
li uchburchakdan
SE = BE · ctg
2
=
2
a
ctg
2
U holda OSE to‘g‘ri burchakli uchbur-
chakdan
cosα =
SE
OE
=
2
/
2
a
a
ctg
2
=tg
2
yoki
α = arc cos (tg
2
).
Javob:
α = arc cos (tg
2
).
8 – misol.
Uchburchakli muntazam piramidaning to‘la sirtini toping. Bu yerda
asosining tomoni a, yon yog‘ining asos tekisligi bilan hosil qilgan burchagi α.
Yechilishi:
Masala shartiga ko‘ra, AS =SВ=AВ=a,
S
to‘la sirt
= S
yon sirt
= S
asos
= 3 S
ΔVSS +
S
acoc
.
Ma’lumki S
asos
=
2
1
AS · BS · sin
3
=
4
3
2
a
S
ΔVSS
=
2
1
CB · SK =
2
1
CB ·
cos
OK
=
2
a
·
cos
OK
=
=
cos
2
a
·
3
1
AK =
cos
6
a
· AC · sin
3
=
cos
12
3
2
a
.
|SM| =
5
2
|SC|
(3) (2) va (3) lardan V
SKLM
=
5
1
·
5
2
·
5
2
V
SABC
=
125
4
V
SABC
. V
KLMABC
= V
ABCS
– V
KLMS
= V
SABC
· (1 –
125
4
) =
125
121
V
SABC
.
V
V
ВС
KLMА
SKLM
=
121
4
.
Javob:
125
4
.
14 – misol.
Uch burchakli muntazam piramida asosining tomoni a ga, kvadrat
shaklidagi kesimning yuzi m
2
ga teng. Piramida yon sirtining asos yuziga nisbatini toping.
Yechilishi:
|B
D| = |DC| bo‘lsin. Tetraedrning
ACD tekislikka nisbatan simmetri-
yasida tetraedr va MNPQ kvadrat o‘ziga
o‘tadi, bundan P
Q. Demak, PQ
AD
∆AQP ~ ∆ABC
|AQ| = |QP| = m.
∆SMN ~ ∆SBC
∆
|
|
|
|
QM
AC
=
|
|
|
|
QВ
AВ
|AC| =
=
|
m
a
аm
.
|SD| =
|
|
|
|
2
2
DС
SC
=
)
(
2
2
3
2
2
m
a
am
a
a
m
.
S
yon
= 3 ·S
SBC
= 3 · |DS| · |SD| =
)
(
4
2
3
3
2
2
2
m
a
am
a
m
a
. S
acoc
=
2
1
|AC| · |AB| · sin 60
0
=
4
3
a
2
.
Javob:
m
a
am
a
m
S
S
acoc
ён
6
3
9
2
2
.
Do'stlaringiz bilan baham: