Ekinshi kishi modul
Jordan-Gauss usılı menen ulıwma sheshim tabıwdıń qolay tárepi sonda, onda sheshim tabılıp parallel túrde sistemanıń birgelikte ekenligi dálillendi yáki birgelikte emesligi kórsetiledi.
Berilgen sistemada bazıbir nolden parqlı koefficientke iye bolǵan hám bul ózgeriwshi qalatuǵın teńleme saylap alınadı. Máselen, dep alıp hár bir teńlemeni sol koefficientke bólemiz hám х1 ózgeriwshini ajratamız:
(4)
bul jerde
(4) teńleme járdeminde (1) sistemanıń qalǵan teńlemelerinen di joq qılamız. Bul ushın (4) ti izbe-iz ge kóbeytirip, sáykes túrde teńlemelerge qosamız. Nátiyjede tómendegi sistema payda boladı:
(5)
bul jerde х1 ajratılǵan ózgeriwshi boladı. (5) sistemanıń 2-teńlemesinde dep, -ózgeriwshini ajratamız. Sonıń ushın sol teńlemeni ge bólemiz. Yaǵnıy:
(6)
Joqarıdaǵı ózgeriwshilerdi ajratıw procesin izbe-iz (6) sistemaǵa qollap, barlıq teńlemelerde ajratılǵan ózgeriwshiler payda qılamız. Nátiyjede berilgen sistemanıń ulıwma sheshimi tabıladı.
Ózgeriwshilerdi ajratıwda tómendegi nızamlarǵa ámel qılıw kerek boladı:
1) Ayırım teńlemeler kóriniske kelip qalsa, olar taslap jiberiledi. Bul jaǵday sistemanıń rangi м nan kishi ekenligin bildiredi;
2) Bazıbir teńleme kóriniske kelip qalsa, bul jaǵday teńleme birgelikte emesligin bildiredi. Ol waqıtta barlıq esaplawlar toqtatılıp “sistema birgelikte emes” dep juwap jazıladı.
(1) sistemanıń oń tárepi nollerden ibarat bolsa, ol bir tekli teńlemeler sisteması delinedi.
(7)
Bul sistema sheshimge iye. Demek, hár qashan birgelikte boladı. Joqarıdaǵı sheshim - trival sheshim bolıp, ámeliyat ushın trival emes sheshimlerdiń bar bolıwı belgili áhmiyetke iye.
Teorema. Eger (7) sistemanıń rangi ushın teńsizlik orınlı bolsa, onda sistema trival emes sheshimge iye boladı.
Dálili. (7) ti Jordan-Gauss usılı menen sheshemiz. bolıwı ushın onda da ajratılǵan ózgeriwshi payda qılıw múmkin. Bul ózgeriwshiler bazis ózgeriwshiler bolıp, qalǵanları bolsa erkli ózgeriwshiler boladı. Erkli ózgeriwshilerdi oń tárepke qaldırsaq, tómendegi sistemaǵa iye bolamız:
.
Bul bolsa ulıwma sheshim boladı. Oń táreptegi ózgeriwshiler ornına túrli mánisler berip, trivial emes sheshimler payda qılınadı. Teorema dálillendi.
Eger teńlemeler sanı ózgeriwshiler sanı ge teń bolsa, trivial emes sheshimlerdiń bar bolıw shárti tómendegi teorema arqalı ańlatıladı.
Teorema. Kvadrat matricalı bir tekli sızıqlı sistemanıń trival emes sheshimleriniń bar bolıwı ushın onıń determinantı nol bolıwı kerek.
Dálili. bolsın.
Bul teńlik matricanıń rangi ekenligin bildiredi, yaǵnıy gárezsiz teńlemeler sanı belgisizler sanınan kishi boladı. Bul jaǵday joqarıda kórilgen sıyaqlı, trivial emes sheshimlerdiń bar bolıwın kórsetedi.
Do'stlaringiz bilan baham: |