No.
2011–2014
2015–2017
2018–2020
Keywords
Frequency
%
Keywords
Frequency
%
Keywords
Frequency
%
1
system
704
16.9
system
645
20.0
system
616
18.6
2
process
403
9.7
composition
300
9.3
composition
550
16.6
3
oil
366
8.8
process
266
8.2
process
373
11.3
4
composition
340
8.2
oil
250
7.8
use
240
7.3
5
apparatus
315
7.6
apparatus
229
7.1
device
215
6.5
6
sand
314
7.5
device
223
6.9
apparatus
209
6.3
7
material
288
6.9
sand
222
6.9
material
185
5.6
8
device
278
6.7
material
215
6.7
treatment
145
4.4
9
gas
211
5.1
use
168
5.2
oil
134
4.1
10
use
189
4.5
gas
166
5.1
product
131
4.0
11
production
176
4.2
water
124
3.8
sand
119
3.6
12
water
161
3.9
production
118
3.7
fluid
102
3.1
13
hydrocarbon
154
3.7
product
105
3.3
preparation
96
2.9
14
surface
145
3.5
treatment
101
3.1
production
96
2.9
15
control
124
3.0
surface
93
2.9
hydrocarbon
95
2.9
total
4168
100%
3225
100%
3306
100%
References
1.
Haupt, M. “Data is the New Oil”—A Ludicrous Proposition. Available online:
https:
//
medium.com
/
project-
2030
/
data-is-the-new-oil-a-ludicrous-proposition-1d91bba4f294
(accessed on 7 July 2020).
2.
Hirsch, D.D. The glass house e
ff
ect: Big Data, the new oil, and the power of analogy.
Maine Law Rev.
2013
,
66
, 373.
3.
Korea Institute of Geoscience and Mineral Resources.
Smart Evaluation Solution for Oil and Gas Field Based on
Integration of Static and Dynamic Data
; KIGAM: Daejeon, Korea, 2019.
4.
Khan, M.Y.; Chetri, H.; Saputelli, L.; Singh, S. Waterflood Optimization and its Impact Using Intelligent
Digital Oil Field (Idof) Smart Workflow Processes: A Pilot Study in Sabriyah Mauddud, North Kuwait.
In Proceedings of the IPTC 2014: International; North Kuwait Petroleum Technology Conference, Doha,
Qatar, 19–22 January 2014; pp. 1–15.
5.
Hussain, A.; Vega, J.C.; Hassane, M.A.S.; Yusaf, S.A.; Abdul-Halim, A.A. Enhancing Smart Completion
Capabilities by Integration with Digital Oil Field Real Time Monitoring System in a Green Field of
ADMA-OPCO. In Proceedings of the Abu Dhabi International Petroleum Exhibition & Conference, Abu Dhabi,
UAE, 7–10 November 2016.
6.
HyunTae, K. The Technology Trend of Upstream Field in Oil. Presented at STEPI Presentation Material,
Sejong, Korea, 22 July 2020.
7.
Qin, H.; Han, Z. Stochastic Resource Allocation for Well Control With Digital Oil Field Infrastructure.
IEEE Syst. J.
2016
,
12
, 1295–1306. [
CrossRef
]
8.
Burda, B.; Crompton, J.; Sardo
ff
, H.M.; Falconer, J. Information Architecture Strategy for the Digital Oil Field.
In Proceedings of the Digital Energy Conference and Exhibition, Huston, TX, USA, 11–12 April 2007.
9.
Tao, Z. IOT’s application in the “Digital Oil Field”.
Telecommun. Sci.
2010
,
4
, 25–32.
10.
Holland, D. Managing the journey to the digital oil field.
Lead. Edge
2004
,
23
, 1137–1138. [
CrossRef
]
11.
Chanana, P.; Soni, T.M.; Bhakne, U. Emerging Technologies and Workflows in Digital Oil Field. In Proceedings
of the O
ff
shore Technology Conference Asia, Kuala Lumpur, Malaysia, 22–25 March 2016.
12.
Taneja, P.; Wate, P. Big data enabled digital oil field.
CSI Commun.
2013
,
37
, 18–20.
13.
Holland, D. Digital Oil Field 2.0: Maturity and Paradigms.
J. Pet. Technol.
2009
,
61
, 56–57. [
CrossRef
]
14.
Rajan, S. Future Technologies of the Oil Field.
Way Ahead
2011
,
7
, 11–14. [
CrossRef
]
15.
Records, L.R.; Shimbo, D.T. Petroleum enterprise intelligence in the digital oil field. In Proceedings of the
SPE Intelligent Energy Conference and Exhibition, Utrecht, The Netherlands, 23–25 March 2010.
Energies
2020
,
13
, 5547
13 of 13
16.
Beckwith, R. Apps and the Digital Oil Field.
J. Pet. Technol.
2012
,
64
, 40–46. [
CrossRef
]
17.
Ali, Z.; Al-Jasmi, A.K.; Qiu, F. Digital Oil Field Experience: An Overview and a Case Study. In Proceedings
of the SPE Digital Energy Conference, The Woodlands, TX, USA, 5–7 March 2013.
18.
Anderson, R.N. ‘Petroleum Analytics Learning Machine’ for optimizing the Internet of Things of today’s
digital oil field-to-refinery petroleum system. In Proceedings of the 2017 IEEE International Conference on
Big Data (Big Data), Boston, MA, USA, 11–14 December 2017; pp. 4542–4545.
19.
Cramer, R.; Gobel, D.; Mueller, K.; Tulalian, R. A measure of the digital oil field status-is it the end of the
beginning? In Proceedings of the SPE Intelligent Energy International, Utrecht, The Netherlands, 27–29
March 2012.
20.
Blei, D.M.; Ng, A.Y.; Jordan, M.I. Latent Dirichlet allocation.
J. Mach. Learn. Res.
2003
,
3
, 993–1022.
21.
BP, “The Field of the Future technology flagship,” 2014.03. Available online:
www.bp.com
(accessed on 2
July 2020).
22.
Crompton, J. The Digital Oil Field Hype Curve: A Current Assessment the Oil and Gas Industry’s Digital Oil
Field Program. In Proceedings of the SPE Digital Energy Conference and Exhibition, The Woodlands, TX,
USA, 3–5 March 2015.
23.
Devries, S.G. Production Management Information Challenges of the Digital Oil Field. In Proceedings of the
SPE Annual Technical Conference and Exhibition, Dallas, TX, USA, 9–12 October 2005.
24.
Jafarizadeh, B.; Bratvold, R.B. Strategic Decision Making in the Digital Oil Field. In Proceedings of the SPE
Digital Energy Conference and Exhibition, Huston, TX, USA, 7–8 April 2009.
25.
Bonham, G.M.; Heradstveit, D.; Narvesen, O.; Shapiro, M.J. A Cognitive Model of Decision-making:
Application to Norwegian Oil Policy.
Coop. Confl.
1978
,
13
, 93–108. [
CrossRef
]
26.
De Oliveira, V.L.C.; Tanajura, A.P.M.; Lepikson, H. A Multi-agent System for Oil Field Management.
IFAC Proc. Vol.
2013
,
46
, 35–40. [
CrossRef
]
27.
Lin, L.; Xianmei, L. Design of training system of oil field simulation based on virtual reality technology.
Comput. Technol. Dev.
2012
,
22
, 205–208.
28.
Lim, J.-T.; Park, H.-W.; Lim, J.-S. Classification and Application of Digital Oil Field System.
J. Korean Soc.
Miner. Energy Resour. Eng.
2014
,
51
, 750–756. [
CrossRef
]
29.
Kwarteng, A.Y. Multitemporal remote sensing data analysis of Kuwait’s oil lakes.
Environ. Int.
1998
,
24
,
121–137. [
CrossRef
]
30.
Landro, M.; Solheim, O.A.; Hilde, E.; Ekren, B.O.; Stronen, L.K. The Gullfaks 4D seismic study.
Pet. Geosci.
1999
,
5
, 213–226. [
CrossRef
]
31.
Hatchell, P.; Kawar, R.; Savitski, A. Integrating 4D Seismic, Geomechanics and Reservoir Simulation in the
Valhall Oil Field. In Proceedings of the 67th EAGE Conference & Exhibition, Madrid, Spain, 14–17 June 2005;
p. cp-1-00585.
32.
Zhang, X.; Jiang, X.; Shi, S.; Chi, T. Digital ocean technological advances. In
Remote Sensing and Modeling
;
Springer: Cham, Switzerland, 2014; pp. 195–214.
33.
Zhang, X.; Wang, L.; Jiang, X.; Zhu, C.
Modeling with Digital Ocean and Digital Coast
; Springer International
Publishing: Basel, Switzerland, 2017.
34.
Statista, 2020. Smart Sensors: Global Average Sales Price 2010–2020. Available online:
https:
//
www.statista.
com
/
statistics
/
736563
/
global-average-sales-price-of-smart-sensors
/
(accessed on 3 July 2020).
35.
Holdaway, K.L. Enhance Digital Oil Fields by Plugging the Technological Capability Gap. In Proceedings of
the North Africa Technical Conference and Exhibition, Cairo, Egypt, 14–17 February 2010.
36.
Janakiraman, S. Digital oil fields—Intelligent wells and platforms.
Pet. Eng.
2018
,
16
, 24. [
CrossRef
]
Publisher’s Note:
MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
a
ffi
liations.
©
2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http:
//
creativecommons.org
/
licenses
/
by
/
4.0
/
).