23
occurring 40 degrees API crude, fed to the distillation column at the refinery
could come out of the still as 1.4 barrels of gasoline and naphtha (typically
C
8
H
18
), 0.6 barrels of kerosene (jet fuel C
12-15
), 0.7 barrels of diesel fuel
(average C
12
H
26
), 0.5 barrels of heavy distillate (C
20-70
), 0.3 barrels of
lubricating stock, and 0.5 barrels of residue (bitumen,
mainly poly-cyclic
aromatics).
The previous figure illustrates weight percent distributions of three different
hypothetical petroleum stocks that could be fed to a refinery with catalytic
cracking capacity. The chemical composition is generalized by the carbon
number which is the number of carbon atoms in each molecule - C
n
H
2n+2
. A
medium blend is desired because it has the composition that will yield the
highest output of high octane gasoline and diesel fuel in the cracking
refinery. Though the heavy stock and the light stock could be mixed to
produce a blend with the same API gravity as the medium stock, the
composition of the blend would be very different from the medium stock, as
the figure indicates. Heavy crude can be processed
in a refinery by cracking
and reforming that reduces the carbon number to increase the high value
fuel yield.
3.1.2 Natural gas
The natural gas used by consumers is composed almost entirely of
methane. However, natural gas found at the wellhead, though still composed
primarily of methane, is not pure. Raw natural gas comes from three types of
wells: oil wells, gas wells, and condensate wells.
Natural gas that comes from oil wells is typically termed “associated gas.”
This gas can exist separately from oil in the formation (free gas), or
dissolved in the crude oil (dissolved gas). Natural gas
from gas and
condensate wells in which there is little or no crude oil, is termed “non-
associated gas.”
Gas wells typically produce only raw natural gas. However condensate wells
produce free natural gas along with a semi-liquid hydrocarbon condensate.
Whatever the source of the natural gas, once separated from crude oil (if
present), it commonly exists in mixtures with other hydrocarbons, principally
ethane, propane, butane, and pentanes. In addition, raw natural gas
contains water vapor, hydrogen sulfide (H
2
S), carbon dioxide, helium,
nitrogen, and other compounds.
24
3.1.3 Condensates
While the ethane, propane, butane, and pentanes
must be removed from
natural gas, this does not mean that they are all waste products. In fact,
associated hydrocarbons, known as natural gas liquids (NGL), can be very
valuable byproducts of natural gas processing. NGLs include ethane,
propane, butane, iso-butane, and natural gasoline. These are sold
separately and have a variety of different uses such as raw materials for oil
refineries or petrochemical plants, as sources of energy, and for enhancing
oil recovery in oil wells. Condensates are also useful as diluents for heavy
crude.
3.2
The reservoir
The oil and gas bearing structure is typically porous rock, such as sandstone
or washed out limestone. The sand may have been laid down as desert sand
dunes or seafloor. Oil and gas deposits form as organic material (tiny plants
and animals) deposited in earlier geological periods, typically 100 to 200
million years ago, under, over or with the sand or silt, are transformed by
high temperature and pressure into hydrocarbons.
Do'stlaringiz bilan baham: