Number Theory: Structures, Examples, and Problems


II Solutions, 5. Basic Principles in Number Theory



Download 1,87 Mb.
Pdf ko'rish
bet100/125
Sana08.02.2022
Hajmi1,87 Mb.
#434761
1   ...   96   97   98   99   100   101   102   103   ...   125
Bog'liq
Titu Andreescu, Dorin Andrica Number Theory Str

II Solutions, 5. Basic Principles in Number Theory
Second, we claim that
x
1
,
y
1
,
z
1
>
0. This is obvious for
x
1
. Next, note that
y
1
=
x
0
+
y
0

2
z
0

2

x
0
y
0

2
z
0
>
2
z
0

2
z
0
=
0. Finally, because
x
0

y
0
and
x
0
y
0
=
z
2
0
+
1, we have
x
0

6
z
2
0
+
1, or
x
0

z
0
. However,
x
0
=
z
0
,
because this would imply that
z
0
y
0
=
z
2
0
+
1, but
z
0
(
z
2
0
+
1
)
when
z
0
>
1. Thus,
z
0

x
0
>
0, or
z
1
>
0.
Therefore,
(
x
1
,
y
1
,
z
1
)
is a triple of positive integers
(
x
,
y
,
z
)
satisfying
x y
=
z
2
+
1 and with
z
<
z
0
. By the inductive hypothesis, we can write
x
1
=
a
2
+
b
2
,
y
1
=
c
2
+
d
2
, and
z
1
=
ac
+
bd
. Then
(
ac
+
bd
)
2
=
z
2
1
=
x
1
y
1

1
=
(
a
2
+
b
2
)(
c
2
+
d
2
)

1
=
(
a
2
c
2
+
b
2
d
2
+
2
abcd
)
+
(
a
2
d
2
+
b
2
c
2

2
abcd
)

1
=
(
ac
+
bd
)
2
(
ad

bc
)
2

1
,
so that
|
ad

bc
| =
1.
Now note that
x
0
=
x
1
=
a
2
+
b
2
and
y
0
=
x
1
+
y
1
+
2
z
1
=
a
2
+
b
2
+
c
2
+
d
2
+
2
(
ac
+
bd
)
=
(
a
+
c
)
2
+
(
b
+
d
)
2
. In other words,
x
0
=
a
2
+
b
2
and
y
0
=
c
2
+
d
2
for
(
a
,
b
,
c
,
d
)
=
(
a
,
b
,
a
+
c
,
b
+
d
)
. Then
|
a
d

b
c
| = |
ad

bc
| =
1,
implying (by logic analogous to the reasoning in the previous paragraph) that
z
0
=
a
c
+
b
d
, as desired. This completes the inductive step, and the proof.
Problem 5.2.9.
Find all pairs of sets A
,
B, which satisfy the following conditions:
(i) A

B
=
Z
;
(ii) if x

A, then x

1

B;
(iii) if x

B and y

B, then x
+
y

A.
(2002 Romanian International Mathematical Olympiad Team Selection Test)
Solution.
We shall prove that either
A
=
B
=
Z
or
A
is the set of even numbers
and
B
the set of odd numbers.
First, assume that 0

B
. Then we have
x

B
,
x
+
0

A
, and so
B

A
.
Then
Z
=
A

B

A
, and so
A
=
Z
. From (ii) we also find that
B
=
Z
. Now
suppose that 0

B
; thus 0

A
and

1

B
. Then, using (ii) we obtain

2

A
,

3

B
,

4

A
, and by induction

2
n

A
and

2
n

1

B
, for all
n

N
. Of
course, 2

A
(otherwise 2

B
and 1
=
2
+
(

1
)

A
and 0
=
1

1

B
, false),
and so 1
=
2

1

B
. Let
n
>
1 be minimal with 2
n

B
. Then 2
n

1

A
and
2
(
n

1
)

B
, contradiction. This shows that 2
N

A
\
B
and all odd integers are
in
B
\
A
. One can also observe that

1

A
(otherwise

2

B
implies

1

B
,
i.e.,

1

A
), and so
A
=
2
Z
,
B
=
2
Z
+
1.
Problem 5.2.10.
Find all positive integers n such that
n
=
m
k
=
0
(
a
k
+
1
),


5.2. Mathematical Induction
281
where a
m
a
m

1
· · ·
a
0
is the decimal representation of n.
(2001 Japanese Mathematical Olympiad)
Solution.
We claim that the only such
n
is 18. If
n
=
a
m
· · ·
a
1
a
0
, then let
P
(
n
)
=
m
j
=
0
(
a
j
+
1
).
Note that if
s

1 and
t
is a single-digit number, then
P
(
10
s
+
t
)
=
(
t
+
1
)
P
(
s
)
. Using this we will prove the following two statements.
Lemma 1.
If P
(
s
)

s, then P
(
10
s
+
t
) <
10
s
+
t.
Proof.
Indeed, if
P
(
s
)

s
, then
10
s
+
t

10
s

10
P
(
s
)

(
t
+
1
)
P
(
s
)
=
P
(
10
s
+
t
).
Equality must fail either in the first inequality (if
t
=
0) or in the third in-
equality (if
t
=
9).
Lemma 2.
P
(
n
)

n
+
1
for all n.
Proof.
We prove this by induction on the number of digits of
n
. First, we know
that for all one-digit
n
,
P
(
n
)
=
n
+
1. Now suppose that
P
(
n
)

n
+
1 for all
m
-digit numbers
n
. Any
(
m
+
1
)
-digit number
n
is of the form 10
s
+
t
, where
s
is an
m
-digit number. Then
t
(
P
(
s
)

1
)

9
((
s
+
1
)

1
),
t P
(
s
)

10
s

t
≤ −
s
,
P
(
s
)(
t
+
1
)

10
s

t

P
(
s
)

s
,
P
(
10
s
+
t
)

(
10
s
+
t
)

P
(
s
)

s

1
,
completing the inductive step. Thus,
P
(
n
)

n
+
1 for all
n
.
If
P
(
n
)
=
n
, then
n
has more than one digit and we may write
n
=
10
s
+
t
.
From the first statement, we have
P
(
s
)

s
+
1. From the second one, we have
P
(
s
)

s
+
1. Thus,
P
(
s
)
=
s
+
1. Hence,
(
t
+
1
)
P
(
s
)
=
P
(
10
s
+
t
)
=
10
s
+
t
,
(
t
+
1
)(
s
+
1
)
=
10
s
+
t
,
1
=
(
9

t
)
s
.
This is possible if
t
=
8 and
s
=
1, so the only possible
n
such that
P
(
n
)
=
n
is 18. Indeed,
P
(
18
)
=
(
1
+
1
)(
8
+
1
)
=
18.


282
II Solutions, 5. Basic Principles in Number Theory
Problem 5.2.11.
The sequence
(
u
n
)
n

0
is defined as follows: u
0
=
2
, u
1
=
5
2
and
u
n
+
1
=
u
n
(
u
2
n

1

2
)

u
1
for n
=
1
,
2
, . . . .
Prove that
u
n
=
2
2
n

(

1
)
n
3
, for all n
>
0
(
x
denotes the integer part of x).
(18th International Mathematical Olympiad)
Solution.
To start, we compute a few members of the sequence. Write
u
1
=
5
2
=
2
+
1
2
.
Then:
u
2
=
u
1
(
u
2
0

2
)

2
+
1
2
=
2
+
1
2
(
2
2

2
)

2
+
1
2
=
2
+
1
2
,
u
3
=
u
2
(
u
2
1

2
)

2
+
1
2
=
2
+
1
2
1
2
+
1
2
2

2
2

2
+
1
2
=
2
+
1
2
2
2
+
1
2
2

2
+
1
2
=
2
+
1
2
2
2

1
+
1
2
2
=
2
3
+
1
2
3
,
u
4
=
2
3
+
1
2
3
1
2
+
1
2
2

2
2

2
+
1
2
=
2
3
+
1
2
3
2
2
+
1
2
2

2
+
1
2
=
2
5
+
1
2
+
2
+
1
2
5

2
+
1
2
=
2
5
+
1
2
5
,
u
5
=
2
5
+
1
2
5
1
2
3
+
1
2
3
2

2
2

2
+
1
2
=
2
5
+
1
2
5
2
6
+
1
2
6

2
+
1
2
=
2
11
+
1
2
11
.
Taking into account the required result, we claim that
u
n
=
2
a
n
+
2

a
n
, where
a
n
=
2
n

(

1
)
n
3
, for all
n

1. We observe that
a
n
is a positive integer, because
2
n

(

1
)
n
(
mod 3
).
Observe that the claimed formula is true for
n
=
1
,
2
,
3
,
4
,
5. Using induction
and the inductive formula that defined
u
n
, we have
u
n
+
1
=
(
2
a
n
+
2

a
n
)
[
(
2
a
n

1
+
2

a
n

1
)

2
] −
2
+
1
2
=
(
2
a
n
+
2

a
n
)(
2
2
a
n

1
+
2

2
a
n

1
)

2
+
1
2
=
2
a
n
+
2
a
n

1
+
2

a
n

2
a
n

1
+
2
2
a
n

1

a
n
+
2
a
n

2
a
n

1

2

2

1
.
We have only to consider the equalities
a
n
+
2
a
n

1
=
a
n
+
1
,
2
a
n

1

a
n
=
(

1
)
n
,


5.2. Mathematical Induction
283
which are easy to check. Hence, we obtain the general formula
u
n
=
2
2
n

(

1
)
n
3
+
1
2
2
n

(

1
)
n
3
,
for all
n

1
.
The required result,
u
n
=
2
2
n

(

1
)
n
3
,
is now obvious.
Second solution.
We have
u
0

2,
u
1

5
2
. We prove by induction that
u
n

5
2
,
for all
n

1
.
u
n
+
1
=
u
n
(
u
2
n

1

2
)

5
2

5
2
25
4

2

5
2
=
5
2
25
4

3
>
5
2
.
The equation
x
+
1
x
=
u
n
has a unique real solution
x
n
, with
x
n
>
1. Indeed, write the equation in the form
x
2

u
n
x
+
1
=
0
,
and we observe that

=
u
2
n

4

25
4

4
>
0. The equation has two positive
real solutions, only one being greater than 1.
Therefore, there exists a unique real sequence
(
x
n
)
n

1
such that
x
n
>
1 and
x
n
+
1
x
n
=
u
n
.
Put this formula in the definition for
u
n
+
1
and obtain
x
n
+
1
+
1
x
n
+
1
=
x
n
x
2
n

1
+
1
x
n
x
2
n

1
+
x
n
x
2
n

1
+
x
2
n

1
x
n

5
2
.
We claim that the sequence
(
x
n
)
n

1
is uniquely defined by the conditions
x
n
+
1
=
x
n
x
2
n

1
,
(1)
x
n
+
1
x
2
n

1
=
2
(

1
)
n

1
.
(2)
Actually, from condition (1) and
x
1
=
2,
x
2
=
2 we deduce
x
3
=
2
1
+
2
=
2
3
,
x
4
=
2
1
+
2
·
2
1
·
2
=
2
5
,
and generally,
x
n
=
2
2
n

(

1
)
n
3
. After that, the solution follows as in the first part.


284
II Solutions, 5. Basic Principles in Number Theory
5.3
Infinite Descent
Problem 5.3.2.
Find all primes p for which there exist positive integers x
,
y, and
n such that p
n
=
x
3
+
y
3
.
(2000 Hungarian Mathematical Olympiad)
Solution.
Observe that 2
1
=
1
3
+
1
3
and 3
2
=
2
3
+
1
3
. We will prove that
the only answers are
p
=
2 and
p
=
3. Assume by contradiction that there
exists
p

5 such that
p
n
=
x
3
+
y
3
with
x
,
y
,
n
positive integers and
n
of
the smallest possible value. Hence at least one of
x
and
y
is greater than 1. We
have
x
3
+
y
3
=
(
x
+
y
)(
x
2

x y
+
y
2
)
with
x
+
y

3 and
x
2

x y
+
y
2
=
(
x

y
)
2
+
x y

2. It follows that both
x
+
y
and
x
2

x y
+
y
2
are divisible by
p
. Therefore
(
x
+
y
)
2

(
x
2

x y
+
y
2
)
=
3
x y
is also divisible by
p
. However,
3 is not divisible by
p
, so at least one of
x
and
y
must be divisible by
p
. Since
x
+
y
is divisible by
p
, both
x
and
y
are divisible by
p
. Then
x
3
+
y
3

2
p
3
and
necessarily
n
>
3. We obtain
p
n

3
=
p
n
p
3
=
x
3
p
3
+
y
3
p
3
=
x
p
3
+
y
p
3
,
and this contradicts the minimality of
n
(see the remark after FMID Variant 1,
Download 1,87 Mb.

Do'stlaringiz bilan baham:
1   ...   96   97   98   99   100   101   102   103   ...   125




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish