Некоторые свойства операций над матрицами. Матричные выражения



Download 165,31 Kb.
bet3/5
Sana07.04.2022
Hajmi165,31 Kb.
#535435
TuriУрок
1   2   3   4   5
То есть числовой множитель можно (и нужно) вынести вперёд, чтобы он «не мешал» умножить матрицы.
Примечание: вообще говоря, формулировка свойства неполная – «лямбду» можно разместить в любом месте между матрицами, хоть в конце. Правило остаётся справедливым, если перемножаются три либо бОльшее количество матриц.
Пример 4
Вычислить произведение

Решение:

(1) Согласно свойству  перемещаем числовой множитель вперёд. Сами матрицы переставлять нельзя!
(2) – (3) Выполняем матричное умножение.
(4) Здесь можно поделить каждое число 10, но тогда среди элементов матрицы появятся десятичные дроби, что не есть хорошо. Однако замечаем, что все числа матрицы делятся на 5, поэтому умножаем каждый элемент на .
Окончательный ответ лучше оставить в виде  , хотя, в принципе, годится и внесение дроби:  . На технических тонкостях умножения матрицы на число я подробно останавливался на уроке Действия с матрицами.
Ответ: 
Маленькая шарада для самостоятельного решения:
Пример 5
Вычислить  , если
Решение и ответ в конце урока.
Какой технический приём важен в ходе решения подобных примеров? С числом разбираемся в последнюю очередь.
Прицепим к локомотиву ещё один вагон:
Как умножить три матрицы?
Прежде всего, ЧТО должно получиться в результате умножения трёх матриц  ? Кошка не родит мышку. Если матричное умножение осуществимо, то в итоге тоже получится матрица. М-да, хорошо мой преподаватель по алгебре не видит, как я объясняю замкнутость алгебраической структуры относительно её элементов =)
Произведение трёх матриц  можно вычислить двумя способами:
1) найти  , а затем домножить на матрицу «цэ»:  ;
2) либо сначала найти  , потом выполнить умножение  .
Результаты обязательно совпадут, и в теории данное свойство называют ассоциативностью матричного умножения:

Пример 6
Перемножить матрицы двумя способами

Алгоритм решения двухшаговый: находим произведение двух матриц, затем снова находим произведение двух матриц.
1) Используем формулу 
Действие первое:

Действие второе:

2) Используем формулу 
Действие первое:

Действие второе:

Ответ: 
Более привычен и стандартен, конечно же, первый способ решения, там «как бы всё по порядку». Кстати, по поводу порядка. В рассматриваемом задании часто возникает иллюзия, что речь идёт о каких-то перестановках матриц. Их здесь нет. Снова напоминаю, что в общем случае ПЕРЕСТАВЛЯТЬ МАТРИЦЫ НЕЛЬЗЯ. Так, во втором пункте на втором шаге выполняем умножение  , но ни в коем случае не  . С обычными числами такой бы номер прошёл, а с матрицами – нет.
Свойство ассоциативности умножения справедливо не только для квадратных, но и для произвольных матриц – лишь бы они умножались:
Пример 7
Найти произведение трёх матриц 

Это пример для самостоятельного решения. В образце решения вычисления проведены двумя способами, проанализируйте, какой путь выгоднее и короче.
Свойство ассоциативности матричного умножения имеет место быть и для бОльшего количества множителей.
Теперь самое время вернуться к степеням матриц. Квадрат матрицы рассмотрен в самом начале и на повестке дня вопрос:

Download 165,31 Kb.

Do'stlaringiz bilan baham:
1   2   3   4   5




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish