National open university of nigeria introduction to econometrics I eco 355


EVALUATING THE RESULTS OF REGRESSION ANALYSIS



Download 1,58 Mb.
Pdf ko'rish
bet98/103
Sana28.02.2022
Hajmi1,58 Mb.
#475577
1   ...   95   96   97   98   99   100   101   102   103
Bog'liq
ECO 355 0

 
3.2.5. EVALUATING THE RESULTS OF REGRESSION ANALYSIS 
Now that we have presented the results of regression analysis of our consumption-income 
example in (4.11.1), we would like to question the adequacy of the fitted model. How 
"good" is the fitted model? We need some criteria with which to answer this question. 
First, are the signs of the estimated coefficients in accordance with theoretical or prior 
expectations? A priori, 
, the marginal propensity to consume (MPC) in the 
consumption function, should be positive. In the present example it is. Second, if theory 
says that the relationship should be not only positive but also statistically significant, is 
this the case in the present application? The MPC is not only positive but also statistically 
significantly different from zero; the p value of the estimated t value
is extremely small. 
The same comments apply about the intercept coefficient. Third, how well does 
the regression model explain variation
in the consumption expenditure? One can 
use 
to answer this question. In 
the present example 
is about 0.96, which is a 
very high value considering that 
can be at most 1.
Thus, the model we have chosen for explaining consumption expenditure
behavior 
seems quite good. But before we sign off, we would like to find out 
whether our 
model satisfies the assumptions of CNLRM. We will not look at the various assumptions 
now because the model is patently so simple. But there is one assumption that we would 
like to check, namely, the normality of the disturbance term, 
. Recall that the 

and 

tests used before require that the error term follow the normal distribution. Otherwise, the 
testing procedure will not be valid in small, or finite, samples. 
4.0 
CONCLUSION 
The unit conclude that statistical approach to forecasting change in a dependent variable 
(sales revenue, for example) on the basis of change in one or more independent variables 
(population and income, for example). Known also as curve fitting or line fitting because 
a regression analysis equation can be used in fitting a curve or line to data points, in a 
manner such that the differences in the distances of data points from the curve or line are 
minimized. Relationships depicted in a regression analysis are, however, associative only, 
and any cause-effect (causal) inference is purely subjective and that variance is the 
difference between an expected and actual result, such as between a budget and actual 
expenditure. 

Download 1,58 Mb.

Do'stlaringiz bilan baham:
1   ...   95   96   97   98   99   100   101   102   103




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish