National open university of nigeria introduction to econometrics I eco 355



Download 1,58 Mb.
Pdf ko'rish
bet92/103
Sana28.02.2022
Hajmi1,58 Mb.
#475577
1   ...   88   89   90   91   92   93   94   95   ...   103
Bog'liq
ECO 355 0

 
7.0 
REFERENCES/FURTHER READINGS 
 
Bello, W.L., (2015). Applied Econometrics in a large Dimension, Fall Publication, 
Benini, Nigeria. 
Gujarat, D. N. (2007) Basic Econometrics, 4
th
Edition, tata Mcgraw – Hill publishing 
company limited, New Delhi. 
Hall, S. G., & Asterion, D. (2011) Applied Econometrics, 2
nd
Edition, Palgrave 
Macmillian, New York city, USA. 
 
 
 
 
 
 
 
 
 
 


122 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
UNIT 3 
REGRESSION ANALYSIS AND ANALYSIS OF VARIANCE 
 
CONTENTS 
 
1.0 Introduction 
2.0 Objectives 
3.0 Main content 
1.
Regression Analysis
2.
Application of Regression Analysis The problem of prediction. 
3.2.1.
Mean Prediction 
3.2.2.
Reporting the results of regression analysis 
3.2.3.
Individual Prediction 
3.2.4.
Evaluating the results of regression analysis 
3.2.5.
Evaluating the results of regression of regression analysis 
4.0 
Conclusion 
5.0
Summary 
6.0 
Tutor-Marked Assignment 
7.0. References 
 
 
 
1.0.
 
INTRODUCTION 


123 
In statistical modeling, regression analysis is a statistical process for estimating the 
relationships among variables. It includes many techniques for modeling and analyzing 
several variables, when the focus is on the relationship between a dependent variable and 
one or more independent variables (or 'predictors'). More specifically, regression analysis 
helps one understand how the typical value of the dependent variable (or 'criterion 
variable') changes when any one of the independent variables is varied, while the other 
independent variables are held fixed. Most commonly, regression analysis estimates the 
conditional expectation of the dependent variable given the independent variables – that 
is, the average value of the dependent variable when the independent variables are fixed. 
Less commonly, the focus is on a quantile, or other location parameter of the conditional 
distribution of the dependent variable given the independent variables. In all cases, the 
estimation target is a function of the independent variables called the regression function. 
In regression analysis, it is also of interest to characterize the variation of the dependent 
variable around the regression function which can be described by a probability 
distribution. 
Regression analysis is widely used for prediction and forecasting, where its use has 
substantial overlap with the field of machine learning. Regression analysis is also used to 
understand which among the independent variables are related to the dependent variable, 
and to explore the forms of these relationships. In restricted circumstances, regression 
analysis can be used to infer causal relationships between the independent and dependent 
variables. However this can lead to illusions or false relationships, so caution is 
advisable; for example, correlation does not imply causation. 
Many techniques for carrying out regression analysis have been developed. Familiar 
methods such as linear regression and ordinary least squares regression are parametric, in 
that the regression function is defined in terms of a finite number of unknown parameters 
that are estimated from the data. Nonparametric regression refers to techniques that allow 
the regression function to lie in a specified set of functions, which may be infinite-
dimensional. 
The performance of regression analysis methods in practice depends on the form of the 
data generating process, and how it relates to the regression approach being used. Since 
the true form of the data-generating process is generally not known, regression analysis 
often depends to some extent on making assumptions about this process. These 
assumptions are sometimes testable if a sufficient quantity of data is available. 
Regression models for prediction are often useful even when the assumptions are 
moderately violated, although they may not perform optimally. However, in many 
applications, especially with small effects or questions of causality based on 
observational data, regression methods can give misleading results. 
variance is the expectation of the squared deviation of a random variable from its mean, 
and it informally measures how far a set of (random) numbers are spread out from their 


124 
mean. The variance has a central role in statistics. It is used in descriptive statistics, 
statistical inference, hypothesis testing, goodness of fit, Monte Carlo sampling, amongst 
many others. This makes it a central quantity in numerous fields such as physics, biology, 
chemistry, economics, and finance. The variance is the square of the standard deviation, 
the second central moment of distribution, and the covariance of the random variable 
with itself.

Download 1,58 Mb.

Do'stlaringiz bilan baham:
1   ...   88   89   90   91   92   93   94   95   ...   103




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish