N. P. Rasulov, I. I. Safarov, R. T. Muxitdinov



Download 0,98 Mb.
bet2/58
Sana26.01.2020
Hajmi0,98 Mb.
#37115
1   2   3   4   5   6   7   8   9   ...   58
Bog'liq
INTEGRAL-HISOB


Isbot: Qaralayotgan (a,b) oraliqdan ixtiyoriy ikkita x1 va x2 (x1x2) nuqtalarni olamiz. Unda y=Q(х) funksiya olingan [x1, x2] kesmada Lagranj teoremasining (VII bob,§3) barcha shartlarini qanoatlantiradi va shu sababli

Q(x2)–Q(x1)=Q′(x)(x2х1 ) , x1x2 ,

tenglik o‘rinli bo‘ladi. Lemma sharti bo‘yicha (a,b) oraliqning barcha nuqtalarida Q′(x)=0 bo‘lgani uchun x nuqtada ham Q′(x)=0 bo‘ladi. Bu yerdan, oldingi tenglikka asosan, Q(x2)–Q(x1)=0, ya’ni Q(x2)=Q(x1) tenglikka ega bolamiz. Bu esa Q(x)=C ekanligini ifodalaydi. Lemma isbot bo‘ldi.

Endi quyidagi teoremani qaraymiz.



1-TEOREMA: Agar F(x)F(х) berilgan f(х) funksiyaning ixtiyoriy ikkita boshlang‘ich funksiyalari bo‘lsa, u holda biror C o‘zgarmas sonda Ф(х)=F(x)+С tеnglik o‘rinli bo‘ladi.

Isbot: Teorema shartiga asosan F(x)F(х) berilgan f(x) funksiyaning boshlang‘ich funksiyalari bo‘lgani uchun F′(x)=f(х) ва Ф′(x)=f (х) tеnglik o‘rinlidir. Bu yerdan Q(x)=F(х)–F(x) funksiyaning hosilasi

Q′(x) = [F(х)–F(x)]′= Ф′(x)–F′(x)=f(х)–f(х)=0

ekanligini ko‘ramiz. Unda, oldingi lemmaga asosan, Q(x)=C natijani olamiz. Demak, Q(x)=F(х)–F(x)=C va haqiqatan ham Ф(х)=F(x)+С tеnglik o‘rinli.

Bu teoremadan ushbu muhim xulosa kelib chiqadi: agar F(x) berilgan f(x) funksiyaning birorta boshlang‘ich funksiyasi bo‘sa, uning barcha boshlang‘ich funksiyalari F(x)+С (C-ixtiyoriy o‘zgarmas son) kabi aniqlanadi. Demak, f(x) funksiyaning barcha boshlang‘ich funksiyalarini topish uchun uning birorta F(x) boshlang‘ich funksiyasini topib, unga C o‘zgarmas sonni qo‘shib qo‘yish kifoyadir. Masalan, f(x)=2x funksiyaning barcha boshlang‘ich funksiyalari x2+C ko‘rinishda bo‘ladi.



2-TA’RIF: Agar F(x) biror (a,b) oraliqda f(x) funksiyaning boshlang‘ich funksiyasi bo‘lsa, unda F(x)+С (С – ixtiyoriy o‘zgarmas son) funksiyalar to‘plami shu oraliqda f(x) funksiyaning aniqmas integrali deyiladi .

Berilgan f(x) funksiyaning aniqmas integrali kabi belgilanadi va, ta’rifga asosan, birorta F(x) boshlang‘ich funksiya bo‘yicha



(2)

tenglik bilan aniqlanadi. Bunda C ixtiyoriy o‘zgarmas son ekanligini yana bir marta eslatib o‘tamiz.



(2) tenglikda - integral belgisi, f(x) integral ostidagi funksiya , f(x)dx integral ostidagi ifoda, x esa integrallash o‘zgaruvchisi deyiladi. Berilgan f(x) funksiyaning aniqmas integralini topish amali bu funksiyani integrallash deb ataladi.

Izoh: Berilgan f(x) uchun qaysi shartda F(x) boshlang‘ich funksiya , demak aniqmas integral, mavjud bo‘lish masalasi kelgusida, §6 da qaraladi.

Yuqorida topilgan boshlang‘ich funksiyalar bo‘yicha quyidagi aniqmas integrallarni yozish mumkin:



, , .

Aniqmas integral ta’rifini ifodalovchi (2) tenglikdan ko‘rinadiki, aniqmas integral y=F(x)+C(C-ixtiyoriy o‘zgarmas son) funksiyalar sinfini ifodalaydi. Shu sababli, geometrik nuqtai-nazardan, aniqmas integral y=F(x) funksiya grafigini OY koordinata o‘qi bo‘ylab parallel ko‘chirishdan (VII bob,§3) hosil bo‘ladigan chiziqlar sinfidan iborat bo‘ladi (69-rasmga qarang).




69-rasm


    1. Download 0,98 Mb.

      Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8   9   ...   58




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish