N., and Bakry, N. M. (2006)



Download 1,31 Mb.
bet51/116
Sana30.04.2017
Hajmi1,31 Mb.
#7880
1   ...   47   48   49   50   51   52   53   54   ...   116

Klassen, W., Keppler, W. J., and Kitzmiller, J. B. (1965). Toxicities of Certain Larvicides to Resistant and Susceptible Aedes aegypti (L.). Bull.W.H.O. 33: 117-122.
Chem Codes: EcoReference No.: 19938
Chemical of Concern: DZ Rejection Code: NO DURATION.

Kline, E. R., Mattson, V. R., Pickering, Q. H., Spehar, D. L., and Stephan, C. E. (1987). Effects of Pollution on Freshwater Organisms. J.Water Pollut.Control Fed. 59: 539-572.


Chem Codes: EcoReference No.: 51026
Chemical of Concern: AND,Al,NH,As,ATZ,Ba,BNZ,Be,Cd,CBL,CTC,CHD,Cl,Cl2,CBZ,CF,CPH,CPY,Cr,Co,cU,CN,DDT,DZ,TCDD,DCB,DPDP,DLD,DMB,DXN,EDT,ES,EN,ETHB,FRN,FML,HPT,HCCH,Fe,Pb,Mn,Hg,PRN,Mo,NAPH,PAH,Ni,NBZ,NP,PCB,PCP,PL,PHTH,Se,Ag,SZ,Sn,TOL,TXP,TPH,TCE,V,Zn Rejection Code: REFS CHECKED/REVIEW.

Knowles, C. O., Errampalli, D. D., and El-Sayed, G. N. (1988). Comparative Toxicities of Selected Pesticides to Bulb Mite (Acari: Acaridae) and Twospotted Spider Mite (Acari: Tetranychidae). J.Econ.Entomol. 81: 1586-1591.


EcoReference No.: 81104


Chemical of Concern: FNV,AZ,PFF,DZ,MP,DMT,CYF,BFT,ADC,MOM; Habitat: T; Effect Codes: MOR; Rejection Code: NO COC(DBAC),ENDPOINT(CYF),REVIEW(BFT),OK(FNV,AZ,PFF,MP,DMT,ADC,MOM),OK TARGET(DZ).

KNOWLES CO and HAMED MS (1988). ACARICIDE TOXICITY PENETRATING AND METABOLISM IN THE BULB MITE. 196TH AMERICAN CHEMICAL SOCIETY NATIONAL MEETING, LOS ANGELES, CALIFORNIA, USA, SEPTEMBER 25-30, 1988. ABSTR PAP AM CHEM SOC; 196 AGRO-164.


Chem Codes: Chemical of Concern: BFT Rejection Code: ABSTRACT.

BIOSIS COPYRIGHT: BIOL ABS. RRM ABSTRACT RHIZOGLYPHUS-ECHINOPUS FORMETANATE DIAZINON BIFENTHRIN DDT CHLORDIMEFORM BROMOPROPYLATE Congresses/ Biology/ Biochemistry/ Metabolism/ Poisoning/ Animals, Laboratory/ Herbicides/ Pest Control/ Pesticides/ Arachnida/ Entomology/Economics/ Arachnida/ Entomology/Economics/ Insecticides/ Pest Control/ Pesticides/ Anatomy, Comparative/ Animal/ Arthropods/Physiology/ Physiology, Comparative/ Pathology/ Arthropods

KNOWLES CO and HAMED MS (1988). ACARICIDE TOXICITY PENETRATING AND METABOLISM IN THE BULB MITE. 196TH AMERICAN CHEMICAL SOCIETY NATIONAL MEETING, LOS ANGELES, CALIFORNIA, USA, SEPTEMBER 25-30, 1988. ABSTR PAP AM CHEM SOC; 196 AGRO-164.
Chem Codes: Chemical of Concern: DZ Rejection Code: ABSTRACT.

BIOSIS COPYRIGHT: BIOL ABS. RRM ABSTRACT RHIZOGLYPHUS-ECHINOPUS FORMETANATE DIAZINON BIFENTHRIN DDT CHLORDIMEFORM BROMOPROPYLATE Congresses/ Biology/ Biochemistry/ Metabolism/ Poisoning/ Animals, Laboratory/ Herbicides/ Pest Control/ Pesticides/ Arachnida/ Entomology/Economics/ Arachnida/ Entomology/Economics/ Insecticides/ Pest Control/ Pesticides/ Anatomy, Comparative/ Animal/ Arthropods/Physiology/ Physiology, Comparative/ Pathology/ Arthropods

Kobayashi, K., Wang, Y., Kimura, S., Rompas, R. M., Imada, N., and Oshima, Y. (1993). Practical Application of Piperonyl Butoxide for the Reduction of Organophosphorus Insecticide-Toxicity to Kuruma Prawn. Bull.Jpn.Soc.Sci.Fish.(Nippon Suisan Gakkaishi) 59: 2053-2057.

EcoReference No.: 4270


Chemical of Concern: DZ,MLN,PPB; Habitat: A; Effect Codes: MOR; Rejection Code: NO ENDPOINT(ALL CHEMS).

Kobayashi, K., Wang, Y., Kimura, S., Rompas, R. M., Imada, N., and Oshima, Y. (1993). Practical application of piperonyl butoxide for the reduction of organophosphorus insecticide-toxicity to kuruma prawn. Nippon Suisan Gakkaishi [NIPPON SUISAN GAKKAISHI/BULL. JAP. SOC. SCI. FISH.]. Vol. 59, no. 12, pp. 2053-2057. 1993.


Chem Codes : Chemical of Concern: DZ Rejection Code: MIXTURE.

ISSN: 0021-5392


Descriptors: toxicity tolerance
Descriptors: insecticides
Descriptors: shrimp culture
Descriptors: Penaeus japonicus
Abstract: A study was carried out to set up a practical application of piperonyl butoxide (PB) for the reduction of organophosphorus insecticide-toxicity to kuruma prawn Penaeus japonicus. The absorption and excretion of PB administered through the diet to kuruma prawn was examined, compared with the case of exposure to PB-seawater. The concentration of PB in the prawn reached a maximum of 13 mu g/g at 3-h after feeding with a 1% PB-diet for 6 h, which was a similar level to the PB in kuruma prawn exposed to 1 ppm PB-seawater for 12 h. By feeding with a 1% PB-diet, the survival times of kuruma prawn exposed to fenitrothion (0.01 ppm), malathion (0.2 ppm), dioxabenzofos (0.4 ppm), phenthoate (0.1 ppm), and diazinon (0.1 ppm) were extended by ca. 11, 5, 5, 3, and 2.5 times over those of the respective control prawns fed with a PB-free diet. However, PB was not effective in reducing the toxicity of dichlorvos (1 ppm) (a typical oxo-form insecticide) to kuruma prawn.
Language: English
English; Japanese
Publication Type: Journal Article
Environmental Regime: Marine
Classification: Q1 01583 Shellfish culture
Classification: Q5 01504 Effects on organisms
Classification: Q3 01583 Shellfish culture
Subfile: ASFA Aquaculture Abstracts; ASFA 3: Aquatic Pollution & Environmental Quality; ASFA 1: Biological Sciences & Living Resources

Kobayashi, Toshihide, Pimplikar, Sanjay W., Parton, Robert G., Bhakdi, Sucharit, and Simons, Kai (1992). Sphingolipid transport from the trans-Golgi network to the apical surface in permeabilized MDCK cells. FEBS Letters 300: 227-231.


Chem Codes: Chemical of Concern: DZ Rejection Code: METHODS.

We have measured the transport of de novo synthesized fluorescent analogs of sphingomyelin and glucosylceramide from the trans-Golgi network (TGN) to the apical membrane in basolaterally permeabilized Madin-Darby canine kidney (MDCK) cells. Sphingolipid transport was temperature, ATP and cytosol dependent. Introduction of bovine serum albumin (BSA), which binds fluorescent sphingolipid monomer, into the permeabilized cells, did not affect lipid transport to the apical membrane. Both fluorescent sphingomyelin and glucosylceramide analogs were localized to the lumenal bilayer leaflet of isolated TGN-derived vesicles. These results strongly suggest that both sphingolipids are transported from the TGN to the apical membrane via vesicular traffic. Sphingolipid transport/ Fluorescent lipid analog/ Streptolysin O/ Trans Golgi network/ Permeabilized cell/ Apical membrane/ MDCK cell

Koestler, R. C., Janes, G., and Miller, J. A. (1992). Pesticide Delivery. In: A.Kydonieus (Ed.), Treatise on Controlled Drug Delivery: Fundamentals, Optimization, Applications, Chapter 11, Marcel Dekker Inc., NY 492-543.
Chem Codes: EcoReference No.: 70603
Chemical of Concern: DZ,PRN,RSM Rejection Code: REVIEW.

Kojima, Hiroyuki, Katsura, Eiji, Takeuchi, Shinji, Niiyama, Kazuhito, and Kobayashi, Kunihiko (2004). Screening for estrogen and androgen receptor activities in 200 pesticides by in vitro reporter gene assays using chinese hamster ovary cells. Environmental Health Perspectives 112: 524-531.


Chem Codes: Chemical of Concern: DZM Rejection Code: IN VITRO.

The authors tested 200 pesticides, including some of their isomers and metabolites, for agonism and antagonism to two human estrogen receptor (hER) subtypes, hERa and hERb, and a human androgen receptor (hAR) by highly sensitive transactivation assays using Chinese hamster ovary cells. The test compds. were classified into nine groups: organochlorines, di-Ph ethers, organophosphorus pesticides, pyrethroids, carbamates, acid amides, triazines, ureas, and others. These pesticides were tested at concns. < 10-5 M. Of the 200 pesticides tested, 47 and 33 showed hERa- and hERb-mediated estrogenic activities, resp. Among them, 29 pesticides had both hERa and hERb agonistic activities, and the effects of the organochlorine insecticides b-benzene hexachloride (BHC) and d-BHC and the carbamate insecticide methiocarb were predominantly hERb rather than hERa agonistic. Weak antagonistic effects toward hERa and hERb were shown in five and two pesticides, resp. On the other hand, none of tested pesticides showed hAR-mediated androgenic activity, but 66 of 200 pesticides exhibited inhibitory activity against the transcriptional activity induced by 5a-dihydrotestosterone. In particular, the antiandrogenic activities of two di-Ph ether herbicides, chlornitrofen and chlomethoxyfen, were higher than those of vinclozolin and p,p'-dichlorodiphenyl dichloroethylene, known AR antagonists. The results of our ER and AR assays show that 34 pesticides possessed both estrogenic and antiandrogenic activities, indicating pleiotropic effects on hER and hAR. The authors also discussed chem. structures related to these activities. Taken together, our findings suggest that a variety of pesticides have estrogenic and/or antiandrogenic potential via ER and/or AR, and that numerous other manmade chems. may also possess such estrogenic and antiandrogenic activities. [on SciFinder (R)] Copyright: Copyright 2005 ACS on SciFinder (R))


Database: CAPLUS
Accession Number: AN 2004:358648
Chemical Abstracts Number: CAN 141:390203
Section Code: 4-4
Section Title: Toxicology
CA Section Cross-References: 2
Document Type: Journal
Language: written in English.
Index Terms: Animal cell line (CHO; estrogen and androgen receptor activities in 200 pesticides by in vitro reporter gene assays using chinese hamster ovary cells); Amides Role: ADV (Adverse effect, including toxicity), POL (Pollutant), BIOL (Biological study), OCCU (Occurrence) (acid; estrogen and androgen receptor activities in 200 pesticides by in vitro reporter gene assays using chinese hamster ovary cells); Ecotoxicity; Environmental pollution; Human; Pesticides; Structure-activity relationship; Transcription (estrogen and androgen receptor activities in 200 pesticides by in vitro reporter gene assays using chinese hamster ovary cells); Androgen receptors; Antiandrogens; Estrogen receptors Role: BSU (Biological study, unclassified), BIOL (Biological study) (estrogen and androgen receptor activities in 200 pesticides by in vitro reporter gene assays using chinese hamster ovary cells); Gene Role: ANT (Analyte), BSU (Biological study, unclassified), ANST (Analytical study), BIOL (Biological study) (hERa; estrogen and androgen receptor activities in 200 pesticides by in vitro reporter gene assays using chinese hamster ovary cells); Gene Role: ANT (Analyte), BSU (Biological study, unclassified), ANST (Analytical study), BIOL (Biological study) (hERb; estrogen and androgen receptor activities in 200 pesticides by in vitro reporter gene assays using chinese hamster ovary cells); Insecticides (organochlorine; estrogen and androgen receptor activities in 200 pesticides by in vitro reporter gene assays using chinese hamster ovary cells); Insecticides (organophosphorus; estrogen and androgen receptor activities in 200 pesticides by in vitro reporter gene assays using chinese hamster ovary cells); Environmental pollution (pesticide; estrogen and androgen receptor activities in 200 pesticides by in vitro reporter gene assays using chinese hamster ovary cells); Pyrethrins Role: ADV (Adverse effect, including toxicity), POL (Pollutant), BIOL (Biological study), OCCU (Occurrence) (pyrethroids; estrogen and androgen receptor activities in 200 pesticides by in vitro reporter gene assays using chinese hamster ovary cells); Gene Role: ANT (Analyte), BSU (Biological study, unclassified), ANST (Analytical study), BIOL (Biological study) (reporter; estrogen and androgen receptor activities in 200 pesticides by in vitro reporter gene assays using chinese hamster ovary cells); Pesticides (toxicity; estrogen and androgen receptor activities in 200 pesticides by in vitro reporter gene assays using chinese hamster ovary cells); Estrogen receptors Role: BSU (Biological study, unclassified), BIOL (Biological study) (a; estrogen and androgen receptor activities in 200 pesticides by in vitro reporter gene assays using chinese hamster ovary cells); Estrogen receptors Role: BSU (Biological study, unclassified), BIOL (Biological study) (b; estrogen and androgen receptor activities in 200 pesticides by in vitro reporter gene assays using chinese hamster ovary cells)
CAS Registry Numbers: 50-29-3; 52-68-6 (Trichlorfon); 55-38-9 (Fenthion); 56-38-2 (Parathion); 57-13-6D (Urea); 58-89-9 (g-Bhc); 60-51-5 (Dimethoate); 60-57-1 (Dieldrin); 62-73-7 (Dichlorvos); 63-25-2 (Carbaryl); 72-20-8 (Endrin); 72-43-5 (Methoxychlor); 72-54-8; 72-55-9; 76-44-8 (Heptachlor); 82-68-8 (Quintozene); 85-00-7 (Diquat); 87-86-5 (Pentachlorophenol); 90-43-7 (2-Phenylphenol); 91-53-2 (Ethoxyquin); 92-52-4 (Biphenyl); 94-74-6 (4-Chloro-o-tolyloxyacetic acid); 94-75-7 (2,4-Dichlorophenoxyacetic acid); 97-17-6 (Dichlofenthion); 101-05-3 (Anilazine); 101-21-3 (Chlorpropham); 115-32-2 (Dicofol); 115-90-2 (Fensulfothion); 119-12-0 (Pyridaphenthion); 121-29-9 (Pyrethrin); 121-75-5 (Malathion); 122-14-5 (Fenitrothion); 122-34-9 (Simazine); 133-06-2 (Captan); 133-07-3 (Folpet); 137-26-8 (Thiram); 148-79-8 (Thiabendazole); 290-87-9D (Triazine); 298-00-0 (Methyl-parathion); 298-02-2 (Phorate); 298-04-4 (Disulfoton); 299-84-3 (Fenchlorphos); 309-00-2 (Aldrin); 319-84-6 (a-BHC); 319-85-7 (b-Bhc); 319-86-8 (d-Bhc); 330-54-1 (Diuron); 330-55-2 (Linuron); 333-41-5 (Diazinon); 463-77-4D (Carbamic acid); 510-15-6 (Chlorobenzilate); 533-74-4 (Dazomet); 563-12-2 (Ethion); 640-15-3 (Thiometon); 709-98-8 (Propanil); 732-11-6 (Phosmet); 789-02-6; 950-37-8 (Methidathion); 959-98-8 (a-Endosulfan); 1014-70-6 (Simetryn); 1024-57-3 (Heptachlor epoxide); 1031-07-8 (Endosulfan sulfate); 1071-83-6 (Glyphosate); 1194-65-6 (Dichlobenil); 1563-66-2 (Carbofuran); 1582-09-8 (Trifluralin); 1610-18-0 (Prometon); 1698-60-8 (Chloridazon); 1836-75-5 (Nitrofen); 1836-77-7 (Chlornitrofen); 1897-45-6 (Chlorothalonil); 1912-24-9 (Atrazine); 1982-47-4 (Chloroxuron); 2032-65-7 (Methiocarb); 2104-64-5 (EPN); 2104-96-3 (Bromophos-methyl); 2164-08-1 (Lenacil); 2212-67-1 (Molinate); 2255-17-6 (Fenitrothion oxon); 2275-23-2 (Vamidothion); 2310-17-0 (Phosalone); 2439-01-2 (Chinomethionat); 2595-54-2 (Mecarbam); 2597-03-7 (Phenthoate); 2631-40-5 (Isoprocarb); 2636-26-2 (Cyanophos); 2921-88-2 (Chlorpyrifos); 3337-71-1 (Asulam); 3766-81-2 (Fenobucarb); 3811-49-2 (Dioxabenzofos); 3861-47-0 (Ioxynil octanoate); 4685-14-7 (Paraquat); 4824-78-6 (Bromophos-ethyl); 5103-71-9 (cis-Chlordane); 5103-74-2 (trans-Chlordane); 5598-13-0 (Chlorpyrifos-methyl); 5836-10-2 (Chloropropylate); 6923-22-4 (Monocrotophos); 7287-19-6 (Prometryn); 7292-16-2 (Propaphos); 10265-92-6 (Methamidophos); 10605-21-7 (Carbendazim); 13067-93-1 (Cyanofenphos); 13071-79-9 (Terbufos); 13194-48-4 (Ethoprophos); 13516-27-3 (Iminoctadine); 13593-03-8 (Quinalphos); 13684-63-4 (Phenmedipham); 15972-60-8 (Alachlor); 16752-77-5 (Methomyl); 17109-49-8 (Edifenphos); 17804-35-2 (Benomyl); 18181-80-1 (Bromopropylate); 18854-01-8 (Isoxathion); 21087-64-9 (Metribuzin); 21609-90-5 (Leptophos); 22224-92-6 (Fenamiphos); 22248-79-9 (Tetrachlorvinphos); 22781-23-3 (Bendiocarb); 23103-98-2 (Pirimicarb); 23135-22-0 (Oxamyl); 23564-05-8 (Thiophanate-methyl); 23950-58-5 (Propyzamide); 24151-93-7 (Piperophos); 25057-89-0 (Bentazone); 25311-71-1 (Isofenphos); 26087-47-8 (Iprobenfos); 26644-46-2 (Triforine); 27355-22-2 (Fthalide); 27605-76-1 (Probenazole); 28249-77-6 (Thiobencarb); 29104-30-1 (Benzoximate); 29232-93-7 (Pirimiphos-methyl); 29973-13-5 (Ethiofencarb); 30560-19-1 (Acephate); 31895-21-3 (Thiocyclam); 32809-16-8 (Procymidone); 32861-85-1 (Chlomethoxyfen); 33089-61-1 (Amitraz); 33213-65-9 (b-Endosulfan); 34643-46-4 (Prothiofos); 35367-38-5 (Diflubenzuron); 35554-44-0 (Imazalil); 36335-67-8 (Butamifos); 36734-19-7 (Iprodione); 38527-91-2 (Prothiofos oxon); 40487-42-1 (Pendimethalin); 41198-08-7 (Profenofos); 41814-78-2 (Tricyclazole); 42576-02-3 (Bifenox); 42609-52-9 (Daimuron); 42874-03-3 (Oxyfluorfen); 43121-43-3 (Triadimefon); 50471-44-8 (Vinclozolin); 50512-35-1 (Isoprothiolane); 50594-66-6 (Acifluorfen); 50594-67-7 (Acifluorfen-methyl); 51218-45-2 (Metolachlor); 51218-49-6 (Pretilachlor); 51338-27-3 (Diclofop-methyl); 51630-58-1 (Fenvalerate); 52315-07-8 (Cypermethrin); 52645-53-1 (Permethrin); 52918-63-5 (Deltamethrin); 55179-31-2 (Bitertanol); 55814-41-0 (Mepronil); 57018-04-9 (Tolclofos-methyl); 57369-32-1 (Pyroquilon); 57837-19-1 (Metalaxyl); 58011-68-0 (Pyrazolynate); 60168-88-9 (Fenarimol); 60207-90-1 (Propiconazole); 61432-55-1 (Dimepiperate); 64249-01-0 (Anilofos); 66063-05-6 (Pencycuron); 66332-96-5 (Flutolanil); 66841-25-6 (Tralomethrin); 67747-09-5 (Prochloraz); 68085-85-8 (Cyhalothrin); 68359-37-5 (Cyfluthrin); 68505-69-1 (Benfuresate); 68694-11-1 (Triflumizole); 69409-94-5 (Fluvalinate); 69806-50-4 (Fluazifop-butyl); 70124-77-5 (Flucythrinate); 71561-11-0 (Pyrazoxyfen); 73250-68-7 (Mefenacet); 74051-80-2 (Sethoxydim); 79538-32-2 (Tefluthrin); 79622-59-6 (Fluazinam); 80844-07-1 (Etofenprox); 83055-99-6 (Bensulfuron-methyl); 85785-20-2 (Esprocarb); 87130-20-9 (Diethofencarb); 88678-67-5 (Pyributicarb); 89269-64-7 (Ferimzone); 96491-05-3 (Thenylchlor); 97483-08-4 (Tolclofos-methyl oxon); 125306-83-4 (Cafenstrole); 133220-30-1 (Indanofan); 138261-41-3 (Imidacloprid) Role: ADV (Adverse effect, including toxicity), POL (Pollutant), BIOL (Biological study), OCCU (Occurrence) (estrogen and androgen receptor activities in 200 pesticides by in vitro reporter gene assays using chinese hamster ovary cells); 521-18-6 (5a-Dihydrotestosterone.) Role: BSU (Biological study, unclassified), BIOL (Biological study) (estrogen and androgen receptor activities in 200 pesticides by in vitro reporter gene assays using chinese hamster ovary cells)
Citations: Andersen, H; Toxicol Appl Pharmacol 2002, 179, 1
Citations: Bauer, E; Analyst 1998, 123, 2485
Citations: Blair, R; Toxicol Sci 2000, 54, 138
Citations: Bulger, W; Biochem Pharmacol 1978, 27, 2417
Citations: Chatterjee, S; Bull Environ Contam Toxicol 1992, 48, 125
Citations: Chen, H; J Toxicol Environ Health 2002, 65, 1419
Citations: Colborn, T; Environ Health Perspect 1995, 103, 135
Citations: Colborn, T; Environ Health Perspect 1993, 101, 378
Citations: Coosen, R; Toxicol Appl Pharmacol 1989, 101, 310
Citations: Cummings, A; Crit Rev Toxicol 1997, 27, 367
Citations: Dejonckheere, W; Toxicol Eur Res 1978, 1, 93
Citations: Friedmann, A; Reprod Toxicol 2002, 16, 275
Citations: Garey, J; Biochem Biophys Res Commun 1998, 251, 855
Citations: Go, V; Environ Health Perspect 1999, 107, 173
Citations: Gray, L; Toxicol Ind Health 1999, 15, 94
Citations: Hayes, T; Proc Natl Acad Sci USA 2002, 99, 5476
Citations: Jensen, T; Clin Chem 1995, 41, 1896
Citations: Kelce, W; Toxicol Appl Pharmacol 1994, 126, 276
Citations: Kelce, W; Nature 1995, 375, 581
Citations: Klotz, D; Life Sci 1997, 60, 1467
Citations: Kojima, H; Environ Health Perspect 2003, 111, 497
Citations: Kuiper, G; Endocrinology 1997, 138, 863
Citations: Kuiper, G; Proc Natl Acad Sci USA 1996, 93, 5925
Citations: Kutz, F; Rev Environ Contam Toxicol 1991, 120, 1
Citations: Lambright, C; Toxicol Sci 2000, 56, 389
Citations: Maness, S; Toxicol Appl Pharmacol 1998, 151, 135
Citations: McInerney, E; Endocrinology 1998, 139, 4513
Citations: Nishihara, T; J Health Sci 2000, 46, 282
Citations: Ostby, J; Toxicol Ind Health 1999, 15, 80
Citations: Saito, K; Toxicol Sci 2000, 57, 54
Citations: Simonich, S; Science 1995, 269, 1851
Citations: Sohoni, P; J Appl Toxicol 2001, 21, 173
Citations: Sohoni, P; J Endocrinol 1998, 158, 327
Citations: Sonnenschein, C; J Steroid Biochem Mol Biol 1998, 65, 143
Citations: Soto, A; Environ Health Perspect 1995, 103, 113
Citations: Tamura, H; Toxicol Sci 2001, 60, 56
Citations: Tomura, A; J Biol Chem 2001, 276, 28395
Citations: Tran, D; Biochem Biophys Res Commun 1996, 227, 140
Citations: Vinggaard, A; Toxicol Appl Pharmacol 1999, 155, 150
Citations: Vinggaard, A; Toxicol Sci 2002, 69, 344
Citations: Vonier, P; Environ Health Perspect 1996, 104, 1318
Citations: Welch, R; Toxicol Appl Pharmacol 1969, 14, 358 estrogen/ androgen/ receptor/ pesticide/ reporter/ gene/ assay/ CHO/ cell

KOJIMA, T., TSUDA, S., and SHIRASU, Y. (1993). Inhibitory effect of fenthion and diazinon on the contraction of rat aorta, and its contribution to lethality. J VET MED SCI; 55 383-385.


Chem Codes: Chemical of Concern: DZ Rejection Code: IN VITRO.

BIOSIS COPYRIGHT: BIOL ABS. Fenthion and diazinon, P=S type organothiophosphates which are precursors of cholinesterase inhibitors, cause remarkable atropine-insensitive hypotension in rats when administered intravenously in lethal doses. We investigated their effects on isolated rat aorta and atria to reveal the site of action. Fenthion and diazinon inhibited both types of contractions induced by high K+ solution and norepinephrine in aortic preparations from which the endothelium was removed. IC50 values (under (Ca2+)=1.5 mM) were 2 10-5 M and 7 10-5 M, respectively. However, the atrial preparations were relatively resistant, since fenthion showed no effect up to 10-3 M and diazinon at 10-4 M exhibited a slight inhibition which was antagonized by atropine. The hypotensive effect of fenthion or diazinon was therefore attributable to the direct inhibiting action on the arterial muscle tone, which may be independent of the activation of muscarinic receptors. The results suggested that fenthion and Biochemistry/ Necrosis/Pathology/ Cardiovascular System/Physiology/ Cardiovascular System/Metabolism/ Heart Diseases/Pathology/ Blood Vessels/Pathology/ Vascular Diseases/Pathology/ Blood Chemical Analysis/ Body Fluids/Chemistry/ Lymph/Chemistry/ Muscles/Physiology/ Muscles/Metabolism/ Cell Differentiation/ Fetal Development/ Morphogenesis/ Embryology/ Animal Diseases/Pathology/ Animal Diseases/Physiopathology/ Herbicides/ Pest Control/ Pesticides/ Muridae

Kojima, T., Tsuda, S., and Shirasu, Y. (1992). Non-cholinergic Mechanisms Underlying the Acute Lethal Effects of P=S Type Organophosphorus Insecticides in Rats. J.Vet.Med.Sci. 54: 529-533.

EcoReference No.: 85788


Chemical of Concern: DZ; Habitat: T; Effect Codes: PHY,MOR; Rejection Code: NO CONTROL,ENDPOINT(DZ).

Kok, L. T. (1972). Toxicity of Insecticides Used for Asiatic Rice Borer Control to Tropical Fish in Rice Paddies. In: The Careless Technol.: Conf.on the Ecological Aspects of Int.Development 498.


EcoReference No.: 9114


Chemical of Concern: DZ,HCCH; Habitat: A; Effect Codes: MOR; Rejection Code: NO ENDPOINT(HCCH,DZ).

Koketsu, K. (1966). Restorative action of fluoride on synaptic transmission blocked by organophosphorous anticholinesterases. Neuropharmacology 5: 247-254.


Chem Codes: Chemical of Concern: DZ Rejection Code: IN VITRO, MIXTURE.

Neuromuscular transmission in frog, blocked by DFP, TEPP or Sarin, can be restored by 0[middle dot]01-0[middle dot]1 mM NaF. The potency of NaF in restoring transmission is less than that of P-2-AM, the effect of 0[middle dot]02 mM NaF being equivalent to that of 0[middle dot]001 mM P-2-AM. The analysis of end-plate potential indicates that the restoration of transmission is due to the dual actions of fluoride, namely, (1) sensitization of end-plate membrane and (2) reactivation of phosphorylated ChE. A similar conclusion is obtained from the analysis of the effects of TEPP and Sarin as well as of NaF on the post-synaptic potential of frog's sympathetic ganglion cell. A similar effect of NaF is also demonstrated with regard to Renshaw cell activity of cat's spinal cord.

KOLPIN DW, BARBASH JE, and GILLIOM RJ (1998). Occurrence of pesticides in shallow groundwater of the United States: Initial results from the National Water-Quality Assessment Program. ENVIRONMENTAL SCIENCE & TECHNOLOGY; 32 558-566.
Chem Codes: Chemical of Concern: DZ Rejection Code: SURVEY.

BIOSIS COPYRIGHT: BIOL ABS. The first phase of intensive data collection for the National Water-Quality Assessment (NAWQA) was completed during 1993-1995 in 20 major hydrologic basins of the United States. Groundwater land-use studies, designed to sample recently recharged groundwater (generally within 10 years) beneath specific land-use and hydrogeologic settings, are a major component of the groundwater quality assessment for NAWQA. Pesticide results from the 41 land-use studies conducted during 1993-1995 indicate that pesticides were commonly detected in shallow groundwater, having been found at 54.4% of the 1034 sites sampled in agricultural and urban settings across the United States. Pesticide concentrations were generally low, with over 95% of the detections at concentrations less than 1 mug. Of the 46 pesticide compounds examined, 39 were detected. The compounds detected most frequently were atrazine (38.2%), deethylatrazine (34.2%), simazine (18.0%), metolachlor (14.6%), and prometon (13. Biochemistry/ Air Pollution/ Soil Pollutants/ Water Pollution/ Soil/ Herbicides/ Pest Control/ Pesticides


Download 1,31 Mb.

Do'stlaringiz bilan baham:
1   ...   47   48   49   50   51   52   53   54   ...   116




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2025
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish