(3) Agar (3) limit mavjud va chekli bo`lsa, xosmas integral yaqinlashuvchi deyiladi. Agar limit mavjud bo`lmasa yoki cheksizga teng bo`lsa, xosmas integral uzoqlashuvchi deb ataladi. (a,b] oraliqda aniqlangan, uzluksiz va x = a nuqta atrofida chegaralanmagan funksiya uchun xosmas integral xuddi shuningdek aniqlanadi (4-rasm): funksiya [a, b] oraliqning c[a,b] nuqtasidan tashqari barcha nuqtalarida aniqlangan va uzluksiz bo`lib, x = c nuqtaning atrofida chegaralanmagan bo`lsin (5-rasm). U holda bu funksiyaning [a, b] kesmadagi 2-tur xosmas integrali xosmas integrallarning yig`indisi kabi aniqlanadi: - (3) Agar (3) limit mavjud va chekli bo`lsa, xosmas integral yaqinlashuvchi deyiladi. Agar limit mavjud bo`lmasa yoki cheksizga teng bo`lsa, xosmas integral uzoqlashuvchi deb ataladi. (a,b] oraliqda aniqlangan, uzluksiz va x = a nuqta atrofida chegaralanmagan funksiya uchun xosmas integral xuddi shuningdek aniqlanadi (4-rasm): funksiya [a, b] oraliqning c[a,b] nuqtasidan tashqari barcha nuqtalarida aniqlangan va uzluksiz bo`lib, x = c nuqtaning atrofida chegaralanmagan bo`lsin (5-rasm). U holda bu funksiyaning [a, b] kesmadagi 2-tur xosmas integrali xosmas integrallarning yig`indisi kabi aniqlanadi:
Agar formulaning o`ng tarafidagi har bir xosmas integral yaqinlashuvchi bo`lsa, funksiyadan [a,b] oraliqda olingan xosmas integral ham yaqinlashuvchi bo`ladi. - Agar formulaning o`ng tarafidagi har bir xosmas integral yaqinlashuvchi bo`lsa, funksiyadan [a,b] oraliqda olingan xosmas integral ham yaqinlashuvchi bo`ladi.
- Misollar:
- 1) xosmas integralni hisoblang. Integral ostidagi funksiya x = 1 nuqtada uzilishga ega. Demak,
- 2) xosmas integralni hisoblang.
- Integral ostidagi funksiya x = 1[0,2] nuqtada 2-tur uzilishga ega. Demak,
- Demak, berilgan integral uzoqlashuvchi ekan.
Matematika va uning tatbiqlarining muhim masalalari x ni emas, balki uning biror noma`lum y(x) funksiyasini topish masalasi qo`yilgan va tarkibida x, y(x), shu bilan birga uning y′(x), y"(x),...,y(n)(x) hosilalarini o`z ichiga olgan murakkab tenglamalarni yechishga keltiriladi. Masalan, y′ + 2y - x3 = 0, y" = с·ax, у′" + у = 0. - Matematika va uning tatbiqlarining muhim masalalari x ni emas, balki uning biror noma`lum y(x) funksiyasini topish masalasi qo`yilgan va tarkibida x, y(x), shu bilan birga uning y′(x), y"(x),...,y(n)(x) hosilalarini o`z ichiga olgan murakkab tenglamalarni yechishga keltiriladi. Masalan, y′ + 2y - x3 = 0, y" = с·ax, у′" + у = 0.
- Erkli o`zgaruvchi x ni, noma`lum y(x) funksiyani va uning n tartibli hosilasiga qadar hosilalarini bog`lovchi tenglamaga n-tartibli oddiy diffcrcnsial tcnglama deyiladi. Yuqoridayozilgan tenglamalar, mos ravishda, birinchi, ikkinchi va uchinchi tartibli differensial tenglamalardir. Umumiy ko`rinishda n-tartibli differensial tenglama
Do'stlaringiz bilan baham: |