-A to'plamini B ga birma-bir xaritalash, bunda quyidagi shartlar bajariladi:
j (fi (x1, ..., xmi)) = gi (j (x1), ..., j (xmi)),
(x1, ..., xnj) O rj O (j (x1), ..., j (xnj) O pj
har qanday x1, x2, ... O A uchun, har qanday i: 1 Ј i Ј k uchun, har qanday j: 1 Ј j Ј l uchun.
2 -shart algebralar uchun avtomatik ravishda qondiriladi; shuning uchun algebralar uchun izomorfizmlar - bu biektsiya bo'lgan homomorfizmlar.
4 -misol (algebralarning izomorfizmi).
Keling, algebralar va * izomorfikdir. Biz j: R ® R + xaritasini j (x) = ex sifatida belgilaymiz. Bu xaritalash bijektsiya va j (x + y) = e (x + y) = ex ey = j (x) j (y).
5 -misol (model izomorfizmi).
Keling, modellar va izomorfikdir. Biz xaritani j (x) = -x belgilaymiz. Bu xaritalash b va j (x) i j (y) Y -x i -y Y x x Ј y.
7 -ta'rif (otomorfizm). Algebraik tizimning o'z -o'zidan izomorfizmiga avtorfizm deyiladi. O'ziga xoslik bo'lgan avtomorfizm arzimas deb ataladi.
Muammo 2. Algebralar * va * izomorf emas.
Muammo 3. <{2,3,4,5,6,7} modelli avtorfizmlar sonini toping; r>, bu erda r - o'zaro murakkablik nisbati *.
1.3 Algebraik tizimlarning quyi tizimlari
8 -ta'rif (quyi tizim). Algebraik tizimning quyi tizimi - bu algebraik tizim , bu erda A' N A, WF 'dan A' gacha bo'lgan barcha amallarning qiymatlari mos keladi. WF operatsiyalari qiymatlari va WR 'A' munosabatlari WR munosabatlariga to'g'ri keladi. Bundan tashqari, A 'kichik to'plami tizimida yopiq deb nomlanadi.
Do'stlaringiz bilan baham: