Misollar. Berilgan matritsalarni ko‘paytiring
1.
2.
3.
4.
5.
Agar matritsaning satrlarini bilan va matritsaning ustularini bilan belgilansa, u holda matritsalarni ko‘paytirish qoidasini quyidagi ko‘rinishda yozish mumkin:
.
Matritsalarni ko‘paytirishda yozuv ikkita bir xil matritsani ko‘paytmasini bildiradi: Shu kabi
Misol. va bo‘lsin. ni toping.
Yechish. Matritsa ko‘rinishdagi funksiyaga o‘tishda sonli
qo‘shiluvchi ko‘paytma bilan almashtiriladi, bu yerda - birlik matritsa
Umuman olganda matritsalarni ko‘paytirish nokommutativ, ya’ni . Masalan, o‘lchamli matritsaning o‘lchamli matritsaga ko‘paytmasi sondan, ya’ni o‘lchamli matritsadan iborat bo‘lsa, ko‘paytmasi - tartibli kvadrat matritsa bo‘ladi.
Bir xil tartibli va kvadrat matritsalar uchun bo‘lsa, va matritsalar kommutativ matritsalar, ayirma esa kommutator deyiladi.
Misol. va matritsalarning kommutatorini toping.
Do'stlaringiz bilan baham: |