Мустақил иш мисоллари



Download 1,37 Mb.
Sana21.04.2022
Hajmi1,37 Mb.
#569245
Bog'liq
2 5402149490553526589


Мустақил иш мисоллари
1. 1-30 мисолларда берилган аниқмас интегралларни ҳисобланг

1. 2.



















  1. Aniqmas integralni toping.
















3. 1-30 мисолларда берилган интегралларни рационал каср функцияларни интеграллаш методида фойдаланиб ҳисобланг.

















  1. Aniqmas integralni toping:
















5. 1-30 мисолларда таркибида тригонометрик функциялар бўлган функцияларни интеграллаш методида фойдаланиб ҳисобланг.















6. Мисолларда берилган аниқ интегралларни ҳисобланг.

















7. 1-30 мисолларда берилган аниқ интегралларни бўлаклабинтеграллаш йўли билан ҳисобланг.


















  1. Aniq integralni hisoblang:
















9. Берилган функциянинг иккинчи тартибли хусусий ҳосилаларини топинг ва эканини текширинг:
2.1. 2.2. .
2.3. . 2.4. .
2.5. . 2.6. .
2.7. . 2.8. .
2.9. . 2.10. .
2.11. . 2.12. .
2.13. . 2.14. .
2.15. . 2.16. .
2.17. . 2.18. .
2.19. . 2.20. .
2.21. . 2.22. .
2.23. . 2.24. .
2.25. . 2.26. .
2.27. . 2.28. .
2.29. . 2.30. .

  1. Differensial tenglamaning umumiy yechimini toping.































11. Diferensial tenglamaning umumiy yechimini toping.














12. 1-30 мисолларда берилган чизиқли дифференциал тенгламаларнинг умумий ечими топилсин.

















13. Koshi masalasini yechimini toping.


































14. Differensial tenglamaning umumiy integralini toping.



















15. Differensial tenglamaning umumiy yechimini toping.

















16. 1-30 мисолларда берилган бир жинсли бўлмаган дифференциал тенгламаларнинг умумий ечимлари топилсин:



















17. Differensial tenglamaning umumiy yechimini toping.


































18. Differensial tenglamaning umumiy yechimini toping.



































19. 1-30 масалаларда берилган икки ва уч ўлчовли интегралларни ҳисобланг.

1.


2.
3.
4. бу ерда Д соха ва чизиқлар билан чегараланган.
5. бу ерда D соха чизиқлар билан чегараланган.
6. чизиқлар билан чегараланган юзни ҳисобланг:
7. сиртлар билан чегараланган жисм ҳажмини ҳисобланг.
8. бу ерда D соха чизиқлар билан чегараланган.
9. бу ерда D соха чизиқлар билан чегараланган.
10. бу ерда D соха чизиқлар билан чегараланган.
11. бу ерда D соха-учлари нуқталарда бўлган учбурчак.
12. чизиқлар билан чегараланган юзини ҳисобланг.
13.
14.
15. − уч ўлчовли интегрални ҳисобланг. Бу ерда Ω соҳа гиперболик параболоид ҳамда ва текисликлар билан чегараланган.
16. уч ўлчовли интегрални хисобланг. Буерда соха цилиндр ва хамда текисликлар билан чегараланган.
17.
18. уч ўлчовли интегрални хисобланг. Бу ерда соха ва сиртлар билан чегараланган.
19. уч ўлчовли интегрални хисобланг. Бу ерда соха ва сиртлар билан чегараланган.
20.
21. ҳисоблансин.
Бу ерда Д соҳа x3+y3=1 чизиқ ва координата ўқлари билан чегараланган.
22. интегрални ҳисобланг.
23. интеграл ҳисоблансин.
Бу ерда Д соҳа x=0,y=0,z=0, x+y+z=1 текисликлар билан чегараланган.

24. эгри чизиқли интегрални ҳисобланг, бу ерда l учлари А(0,0), В(1,0) ва С(0,1) нуқталарда бўлиб, соат стрелкасининг йўналишига қарши ҳаракат қилувчи учбурчак контуридир.


25. эгри чизиқли интегрални ҳисобланг, бу ерда АВ кесма А(1,2) ва В (2,4) нуқталарни туташтирувчи тўғри чизиқ кесмаси.
26. (1,2) ва (2,4) нуқталарни бирлаштирувчи ва ихтиёрий йўл бўйича олинган эгри чизиқли интеграл ҳисоблансин.
27. (0,0) ва (3,4) нуқталарни бирлаштирувчи ва ихтиёрий йўл билан олинган эгри чизиқли интеграл ҳисоблансин.
28. (1,2) ва (3,6) нуқталарни бирлаштирувчи ва ихтиёрий йўл бўйича олинган эгри чизиқли интеграл ҳисоблансин.
29. сиртлар билан чегараланган жисмнинг ҳажми ҳисоблансин.
30. сиртлар билан чегараланган жисмнинг ҳажми ҳисоблансин.

20. 1-30 мисолларда берилган сонли қаторлар яқинлашиши текширилсин.


1. 2.


3. 4.
5. 6.
7. 8.
9. 10.
11. 12.
13. 14.
15. 16.
17. 18.
19. 20.
21. 22.
23. 24.
25. 26.
27. 28.
29. 30.
Download 1,37 Mb.

Do'stlaringiz bilan baham:




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2025
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish