MUNDARIJA
Kirish
I.BOB. FOTOEFFEKT HODISASINING KASHF ETILISHI
1.1. Fotoeffekt, uning turlari va qonunlari.
1.2. Gerts tajribasi. Stalatev qonunyatlari
1.3. Tashqi fotoeffekt qonunlarinio’rganish
II.BOB. FOTOEFFEKT NAZARIYASI
2.1. Fotoeffekt mavzusini muqobil Quyosh energitikasi elementlari bilan bog’lab o’tib masalasi va uning o’zgachaliklari
2.2.Ko’pfotonli fotoeffekt.
Xulosa
Foydalanilgan adabiyotlar ro’yxati
KIRISH
“Yoshlarimizning ma`naviy salohiyatga ega bo`lib, dunyo miqyosida o`z tengdoshlariga hech qaysi sohada bo`sh kelmaydigan insonlar bo`lib kamol topishi, mustaqil fikrlaydigan, yuksak intellektual va baxtli bo`lishi uchun davlatimizning va jamiyatimizning bor kuch va imkoniyatlarini safarbar etamiz”
Sh.M.Mirziyoyev.
O`zbekiston Respublikasi Prezidenti
Mavzuning dolzarbligi: Iqtisodiy taraqqiy etgan va rivojlanib borayotgan mamlakatlarda an’anaviy energiya mambalarining Jahon miqyosidagi zaxiralari kamayib borayotgan sharoitda iqtisodiyotning barqaror rivojlanishi va raqobotbardoshligini oshirishning eng muhim omili sifatida muqobil energiya manbalaridan amalda foydalanish boyicha ishlar jadal suratlar bilan olib borilmoqda.
Kurs ishining vazifas: Hozirgi paytda ishlab chiqarishning barcha sohalarida davr talabiga javob beradigan yangi texnikalarning ishga tushirilishi koproq elektr energiyasini talab qilmoqda. Elektr energiyasini olishda asosan yonilgi moddalar neft, tabiyiy gaz va komirlardan foydalaniladi
I.BOB. FOTOEFFEKT NAZARIYASI
1.1. Fotoeffekt, uning turlari va qonunlari.
Fotoeffekt — moddalarning elektromagnit nurlanish taʼsirida elektron chiqarishi. F. hodisasini 1887 yilda nemis fizigi G. Gers ochgan. Dastlabki asosiy tadqiqotlarni rus olimi A. G. Stoletov (1888), soʻngra nemis fizigi F. Leonard (1899) oʻtkazgan. F. qonunlarini birinchi boʻlib A. Eynshteyn (1905) nazariy tushuntirgan. F.ning asosiy qonuniyatlari: 1) chiqarilayotgan elektronlar soni nurlanish intensivligiga proporsional; 2) har bir modda uchun uning sirtining maʼlum holatiga va T=0 K trada chegara — nurlanishning eng kichik chastotasi P50 (yoki eng katta toʻlki n uzunligi ^0) mavjud boʻlib, bu chegaradan tashqarida F. sodir boʻlmaydi; 3) fotoelektronlarning eng katta kinetik energiyasi nurlanish chastotasi 03 ortishi bilan chiziqli ortadi va nurlanishning intensivligiga bogʻliq boʻlmaydi. F. — kvant hodisa, uning ochilishi kvant nazariyasini eksperimental asoslashda muhim rol oʻynadi; F. qonuniyatlarini faqat kvant nazariyasi asosida tushuntirish mumkin. Erkin elektron fotonnk yutishi mumkin emas, chunki bunda bir vaqtning oʻzida energiyaning ham, impulsning ham saklanish qonuni bajarilmaydi. Elektron atrof muhit bilan brgʻlanganligi uchun F. hodisasi atom, molekula va kondensatlangan muhitda hosil boʻlishi mumkin. Bu bogʻlanish atomda ionlanish energiyasi ye, bn, kondensatlangan muhitda chiqish ishi A bilan tavsiflanadi. F.dagi energiyaning saklanish qonuni Eynshteyn munosabati bilan ifodalanadi: E=hm — ye (yoki Ehw — A), bunda Ye — fotoelektronning kinetik energiyasi. T=0K va yoruglik intensivligi kichik boʻlganda (amadda koʻp fotonli effektlar boʻlmaganda), agar h sh < ye, yoki h sh < A boʻlsa, F. boʻlmaydi.
Gazlarda F. ayrim atom va molekulalarda kuzatiladi (fotoionlanish). Bunda foton yutilib, elektron chikarish yoʻli bilan ionlanish yuz beradi. Fotonning ionlashga sarflagan energiyadan boshqa gamma energiyasi chikarilayotgan elektronga beriladi. Kondensatlangan muhitlarda fotonlarni yutish mexanizmi ularning energiyasiga bogʻliq. h Sh > A da foton utkazuvchanlik elektronlari (metallarda) yoki valentlik elektronlari (yarimoʻtkazgichlar va dielektriklarda) tomonidan yutiladi. Natijada tashqi F. yoki ichki F. kuzatiladi. P GO juda katta boʻlganda (ukvantlar holida) fotoelektronlar atomning chuqur qobiqlaridan urib chiqarilishi mumkin. Koʻpgina metallarning toza sirtlari uchun A>3 eV, shuning uchun metallarda F. ultrabinafsha sohada kuzatiladi. Ishqoriy yer metallari va bariy (Va) uchun F. koʻrinadigan yorugʻlik sohasida ham kuzatiladi.
Fotoeffekt nazariyasi
Fotoeffektning faqatgina birinchi qonunini to‘lqin nazariyasi asosida tushuntirish mumkin. Ammo to‘lqin nazariyasi fotoeffektning ikkinchi va uchinchi qonunlarini tushuntira olmaydi.
Haqiqatdan ham to‘lqin nazariyaga asosan fotokatodga tushayotgan ixtiyoriy to‘lqin uzunlikka ega bo‘lgan yorug‘likning intensivligi ortgan sari ajralib chiqayotgan fotoelektronlarning energiyalari ham ortishi kerak edi. Ammo tajribalarning ko‘rsatishicha, fotoelektronlarning energiyasi yorug‘lik intensivligiga mutlaqo bog‘liq emas.
To‘lqin nazariyasiga asosan, elektron metalldan ajralib chiqishi uchun kerakli energiyani har qanday yorug‘likdan olishi mumkin, ya’ni yorug‘lik to‘lqin uzunligining ahamiyati yo‘q. Faqat yorug‘lik intensivligi yetarlicha katta bo‘lishi lozim. Vaholanki, to‘lqin uzunligi qizil chegaradan katta bo‘lgan yorug‘likning intensivligi har qancha katta bo‘lsa ham, fotoeffekt hodisasi yuz bermaydi. Aksincha, to‘lqin uzunligi qizil chegaradan kichik bo‘lgan yorug‘lik intensivligi nihoyat kuchsiz bo‘lsa ham fotoeffekt hodisasi kuzatiladi. Bundan tashqari, nihoyatda kuchsiz intensivlikdagi yorug‘lik tushayotgan taqdirda, to‘lqin nazariyasiga asosan, yorug‘lik to‘lqinlar tashib kelgan energiyalar evaziga metalldagi elektron ma’lum miqdordagi energiyani to‘plab olishi kerak. Bu energiya elektronning metalldan chiqishi uchun yetarli bo‘lgan holda fotoeffekt sodir bo‘lishi kerak. Hisoblashlarning ko‘rsatishicha, intensivligi juda kam bo‘lgan yorug‘likdan Ach ga yetarli energiyani elektron to‘plab olishi uchun soatlab, hattoki kunlab vaqt o‘tishi lozim ekan. Tajribalarda esa metallga yorug‘likning tushishi va fotoelektronlarning vujudga kelishi orasida 10–9 sekundlar chamasi vaqt o‘tadi, xolos.
Do'stlaringiz bilan baham: |