/=]
bilan ifodalash mumkin. Har bir i=l,kuchun G.tgraf daraxt bo'lgani uchun, yuqorida isbotlangan tasdiqqa ko'ra, agar unda mj ta uch va «.ta qirra bo'lsa, u holda G. asiklikdir va n=m—1 tenglik
Agar qandaydir ikki uch bittadan ko'p, masalan, ikkita turli oddiy zanjir vositasida tutashtirilishi imkoniyati bo'lsa, u holda bu uchlarning biridan zanjirlarning birontasi bo'ylab harakatlanib ikkinchi uchga, keyin bu uchdan ikkinchi zanjir bo'ylab harakatlanib dastlabki uchga qaytish imkoniyati bor bo'lar edi. Ya'ni qaralayotgan graf da sikl topilar edi
MANBA;fayillar.org
MUHAMMAD AL-XORAZMIY NOMIDAGI TOSHKENT AXBOROT
TEXNALOGIYALARI UNIVERSITETI QARSHI FILIALI KOMPYUTER INJINERINGI FAKULTETI KI-13-21 GURUH DISKRET TUZILMALAR FANIDAN
9-MUSTAQIL ISH
BAJARDI: DJUMANIYOZOV S
QABUL QIDI: TURDIYEV U.Q
MAVZU :Kommivoyajer masalasi algoritmlarini o‘rganish, chuqurlik va eni bo‘yicha aylanib o‘tuvchi graflar, kommivoyajer masalasini yechish
MAVZU :Kommivoyajer masalasi algoritmlarini o‘rganish, chuqurlik va eni bo‘yicha aylanib o‘tuvchi graflar, kommivoyajer masalasini yechish
Reja;
1. Masala qo’yilishi.
2.Evristik algoritmlar.
3. GTS algoritmini tuzish
4. Algoritmni baholash
Masala qo’yilishi. Djek – kompyuterlar sotish bo’yicha agent (kommivoyajer), uning qaramog’ida 20 ta shahar bor. ishlayotgan kompaniya yo’l harajatlarining 50% ni to’laydi. Djek uning qaramog’ida bo’lgan har ikki shahar orasida yo’l harajatini hisoblab chiqqan. Masala yo’l harajatlarini kamaytirishdan iborat.
Dastlabki ma’lumotlar Djek tasarrufidagi shaharlar ruyhati va narxlar matrisasi ko’rinishida berilgan. Bu yerda matrisa i shahardan j shaharga borish narxiga teng bo’lgan c(i,j) elementlardan tashkil topgan ikki o’lchamli massiv. Shaharlar soni 20 ta bo’lsa, matrisa - bo’ladi.
Biz Djekga yo’l harajatlarini kamaytirishga yordam berishimiz kerak. Djekning marshruti o’zi yashagan shahardan boshlanib, qolgan hamma shaharlarni bir martadan o’tib, yana o’z shahriga qaytib kelishi kerak. Demak, biz tuzayotgan ruyhatda har bir shahar faqat bir marta uchrashi kerak, Lekin Djek yashagan shahar ikki marta uchrab, ruyhatning birinchi va oxirgi elementlari bo’ladi. Undan tashqari, ruyhatdagi shaharlar tartibi Djekning marshrutini belgilaydi. Ruyhatdagi ikkita oxirgi shaharlar orasidagi yo’l narxi – bu butun marshrut narxi deb hisoblanadi. Demak, agar biz Djekga eng kichik narxdagi ruyhatni tuzib bersak, masalani yechgan bo’lamiz.
Evristik algoritmlar.
Evristika yoki evristik algoritm – algoritm deb ta’riflanishi uchun quyidagi hususiyatlarga ega bo’lishi kerak:
U odatda shartli ravishda optimal bo’lmasa ham, yahshi yechimlarni topish kerak.
Uni ixtiyoriy ma’lum aniq algoritmdan ko’ra, amalga oshirish tezroq va soddaroq bo’lishi kerak.
Odatda yahshi algoritmlar evristik bo’lib chiqadi. Faraz qilaylik, biz tez ishlaydigan va barcha test topshiriqlariga javob beradigan algoritmni tuzdik, lekin uning to’g’riligini isbotlab bilmaymiz. Shunday isbot berilmaguncha, algoritm evristik deb tushuniladi.
Misol tariqasida quyidagi algoritmni ko’rib chiqamiz:
GTS algoritmi: (kommivoyajer). N ta shaharlar va C narxlar matrisasi berilgan kommivoyajer masalasi uchun U shahardan boshlab COST narxli TOUR yaqinlashgan yechimni topish kerak.
|
Do'stlaringiz bilan baham: |