Муҳаммад ал-хоразмий номидаги тошкент ахборот технологиялари



Download 4,12 Mb.
Pdf ko'rish
bet56/116
Sana23.02.2022
Hajmi4,12 Mb.
#117967
1   ...   52   53   54   55   56   57   58   59   ...   116
Bog'liq
KIBER XAVFSIZLIK MUAMMOLARI VA ULARNING

Литература 
1. Siddikov Isamidin Xakimovich, Bakhrieva Xurshida Askarxodjaevna, 
Designs Neuro-Fuzzy Models in Control Problems of a Steam Heater Universal 
Journal of Electrical and Electronic Engineering 6(5): 359-365, 2019 
http://www.hrpub.org DOI: 10.13189/ujeee.2019.060506 359-365 p. 
2. Siddikov Isamiddin Xakimovich, Umurzakova Dilnoza Maxamadjonovna, 
Bakhrieva Hurshida Askarxodjaevna Adaptive system of fuzzy-logical regulation 
by temperature mode of a drum boiler IIUM Engineering Journal, Vol. 21, No. 1, 
2020, 182-192p. https://doi.org/ 10.31436/iiumej.v21i1.1220
3.Siddikov I.X., Umurzakova D.M., Adaptive neuro-fuzzy regulating system 
of the temperature mode of the drum boiler // International Journal of Advanced 
Research in Science, Engineering and Technology. Vol. 6. Issue 1. January 2019 y. 
pp.7869-7872. 


132 
4.I.Х. Siddikov, Х.А.Bakhrieva, D.М.Umurzakova Modeling a fuzzy 
adaptive temperature control system of a heat power facility / «Problems of 
computer science and energy» №1, 2019 P.40-47
5.И.Х.Сиддиков, Х.А.Бахриева, Д.М.Умурзакова Синтез адаптивный 
нейронечеткой системы управления параметрами парового котла Вестник 
ТГТУ 2019, №2(107) 35-40. 
ИСПОЛЬЗОВАНИЕ НЕЙРОКОМПЬЮТЕРНОГО МОДЕЛИРОВАНИЯ 
В АВТОМАТИЗИРОВАННОЙ СИСТЕМЕ ОБУЧЕНИЯ СТУДЕНТОВ
И КОНТРОЛИ ИХ ЗНАНИЙ 
Агзамова (Нуриддинова) М. Ш. 
Ташкентский университет информационных технологий имени Мухаммада 
ал-Хоразмий, стажер-преподаватель, 
mokhina_nur@mail.ru. 
В условиях развития цифровой экономики одним из главных ресурсов 
являются знания [1]. Проблемы объективности оценки знаний, умений и 
навыков пользователя компьютерной системой заставляет разработчиков 
прибегать 
к 
анализу 
дополнительных 
критериев 
(характеристик 
пользователя), с учетом которых выставляется результирующая оценка. С 
возрастанием числа факторов, которые могут быть отслежены/учтены при 
тестировании пользователя компьютерной системой, трудоемкостью 
реализации такого подхода, а также ориентацией дистанционного 
тестирования 
на 
массовую 
аудиторию, 
очевидна 
необходимость 
оптимизации процессов обработки результатов тестирования как в системах 
управления обучением, так и на уровне электронных учебных курсов. 
В докладе рассматриваются вопросы моделирования на основе 
нейронных сетей [2]. Имитационное моделирование нейронных сетей, т.е. 
программная реализация обучения архитектур нейронных сетей на 
сегодняшний день имеют широкие возможности. 
Значительная доля всех приложений нейронных сетей приходится на 
использование их программных моделей.
Персептрон – это некоторый инструмент, который способен 
«запоминать» («обучиться») – какой образ относиться к какому классу.
После такого обучения в идеале, он должен уметь правильно «узнавать» 
и другие образы, не входившие в обучающее множество. Способность 
персептрона обучиться зависит от уникальности наборов признака с 
точностью до класса.
Любой объект изучения можно охарактеризовать некоторыми 
признаками. 
Набор таких признаков называется признаковым множеством. Сам 
объект называют образом. Если признак представим как число, то набор n-
признаков можно рассматривать как точку в n-мерном пространстве (или 
вектор из числа координат в эту точку) [3].


133 
Множество образов со сходными признаковыми множествами 
называется классом, а геометрической интерпретации класс – это некоторая 
область, заключающая в себе точку (т.е. признаковые множества образа). 
Таким образом, задачу можно сформулировать так: нужно определить к 
какому классу относится тестируемый образ. Эта задача и решается 
персептроном.
Рассмотрим математическую модель нейрона (рис.1) [5]. Примером 
системы, реализующей имитационное моделирование нейросетей является 
программный пакет MATLAB. Эта система предусматривает диалоговое 
программное средство, обеспечивающее: 
a) 
Численные вычисления; 
b) 
Соответствующие выражения и представления данных; 
c) 
Наглядное выполнение функции. 
Кроме того, MATLAB – это эффективный язык программирования, 
состоящий из ряда операторов и универсальных команд. Основное свойство 
системы: интеллектуальное программирование на основе анализа систем 
линейных уравнений. Средства системы MATLAB открывает возможность 
решать множество проблем прикладной математики.
Рис.1 Математическая модель нейрона 
Таким образом, очевидно, что использование нейрокомпьютерного 
моделирования 
позволяет 
осуществлять 
автоматизированный, 
интеллектуальный контроль знаний студентов, а также использовать 
широкую номенклатуру сценариев обучения . 

Download 4,12 Mb.

Do'stlaringiz bilan baham:
1   ...   52   53   54   55   56   57   58   59   ...   116




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish