Mt department Nazirova E. Sh


Multiresolution based discrete wavelet transforms (continuous in time)



Download 5,8 Mb.
bet8/33
Sana31.12.2021
Hajmi5,8 Mb.
#268289
1   ...   4   5   6   7   8   9   10   11   ...   33
Bog'liq
Final work

Multiresolution based discrete wavelet transforms (continuous in time) In any discretised wavelet transform, there are only a finite number of wavelet coefficients for each bounded rectangular region in the upper halfplane. Still, each coefficient requires the evaluation of an integral. In special situations this numerical complexity can be avoided if the scaled and shifted wavelets form a multiresolution analysis.



Figure 1.5 D4 wavelet

This means that there has to exist an auxiliary function, the father wavelet in and that a is an integer. typical choice is a = 2 and b = 1. The most famous pair of father and mother wavelets is the Daubechies 4-tap wavelet. Note that not every orthonormal discrete wavelet basis can be associated to a multiresolution analysis; for example, the Journe wavelet admits no multiresolution analysis.

From the mother and father wavelets one constructs the subspaces



The father wavelet keeps the time domain properties, while the mother wavelets keeps the frequency domain properties. From these it is required that the sequence

forms a multiresolution analysis of and that the subspaces …, …… are the orthogonal "differences" of the above sequence, that is, is the orthogonal complement of inside the subspace ,



In analogy to the sampling theorem one may conclude that the space with sampling distance more or less covers the frequency baseband from 0 to . As orthogonal complement, roughly covers the band [ , ].

From those inclusions and orthogonality relations, especially , follows the existence of sequences and that satisfy the identities

The second identity of the first pair is a refinement equation for the father wavelet . Both pairs of identities form the basis for the algorithm of the fast wavelet transform.

From the multiresolution analysis derives the orthogonal decomposition of the space as

For any signal or function this gives a representation in basis functions of the corresponding subspaces as



where the coefficients are






Download 5,8 Mb.

Do'stlaringiz bilan baham:
1   ...   4   5   6   7   8   9   10   11   ...   33




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2025
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish