Mt department Nazirova E. Sh



Download 5,8 Mb.
bet19/33
Sana31.12.2021
Hajmi5,8 Mb.
#268289
1   ...   15   16   17   18   19   20   21   22   ...   33
Bog'liq
Final work

1.5 Wavelets


Biorthogonal nearly coiflet (BNC) wavelets In applied mathematics, biorthogonal nearly coiflet bases are wavelet bases proposed by Lowell L. Winger. The wavelet is based on biorthogonal coiflet wavelet bases, but sacrifices its regularity to increase the filter's bandwidth, which might lead to better image compression performance.

Nowadays, a large amount of information is stored, processed, and delivered, so the method of data compressing — especially for images — becomes more significant. Since wavelet transforms can deal with signals in both space and frequency domains, they compensate for the deficiency of Fourier transforms and emerged as a potential technique for image processing.

Traditional wavelet filter design prefers filters with high regularity and smoothness to perform image compression. Coiflets are such a kind of filter which emphasizes the vanishing moments of both the wavelet and scaling function, and can be achieved by maximizing the total number of vanishing moments and distributing them between the analysis and synthesis low pass filters. The property of vanishing moments enables the wavelet series of the signal to be a sparse presentation, which is the reason why wavelets can be applied for image compression. Besides orthogonal filter banks, biorthogonal wavelets with maximized vanishing moments have also been proposed. However, regularity and smoothness are not sufficient for excellent image compression. Common filter banks prefer filters with high regularity, flat passbands and stopbands, and a narrow transition zone, while Pixstream Incorporated proposed filters with wider passband by sacrificing their regularity and passband flatness.

The biorthogonal wavelet base contains two wavelet functions, and its couple wavelet , while relates to the lowpass analysis filter H0 and the high pass analysis filter G0. Similarly, relates to the lowpass synthesis filter and the high pass synthesis filter . For biorthogonal wavelet base, and are orthogonal; Likewise, and are orthogonal, too.

In order to construct a biorthogonal nearly coiflet base, the Pixstream Incorporated begins with the (max flat) biorthogonal coiflet base. Decomposing and reconstructing low-pass filters expressed by Bernstein polynomials ensures that the coefficients of filters are symmetric, which benefits the image processing: If the phase of real-valued function is symmetry, than the function has generalized linear phase, and since the human eyes are sensitive to symmetrical error, wavelet base with linear phase is better for image processing application.

Recall that the Bernstein polynomials are defined as below:



which can be considered as a polynomial over the interval Besides, the Bernstein form of a general polynomial is expressed by



where are the Bernstein coefficients. Note that the number of zeros in Bernstein coefficients determines the vanishing moments of wavelet functions. By sacrificing a zero of the Bernstein-basis filter at (which sacrifices its regularity and flatness), the filter is no longer coiflet but nearly coiflet. Then, the magnitude of the highest-order non-zero Bernstein basis coefficient is increased, which leads to a wider passband. On the other hand, to perform image compression and reconstruction, analysis filters are determined by synthesis filters. Since the designed filter has a lower regularity, worse flatness and wider passband, the resulting dual low pass filter has a higher regularity, better flatness and narrower passband. Besides, if the passband of the starting biorthogonal coiflet is narrower than the target synthesis filter , then its passband is widened only enough to match in order to minimize the impact on smoothness (i.e. the analysis filter is not invariably the design filter). Similarly, if the original coiflet is wider than the target , than the original filter's passband is adjusted to match the analysis filter . Therefore, the analysis and synthesis filters have similar bandwidth.

The ringing effect (overshoot and undershoot) and shift-variance of image compression might be alleviated by balancing the passband of the analysis and synthesis filters. In other word, the smoothest or highest regularity filters are not always the best choices for synthesis low pass filters.

The idea of this method is to obtain more free parameters by despairing some vanishing elements. However, this technique cannot unify biorthogonal wavelet filter banks with different taps into a closed-form expression based on one degree of freedom.




Download 5,8 Mb.

Do'stlaringiz bilan baham:
1   ...   15   16   17   18   19   20   21   22   ...   33




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish