Modelling, prediction and classification of student academic performance using artificial neural networks



Download 302,61 Kb.
bet4/6
Sana08.07.2022
Hajmi302,61 Kb.
#757549
1   2   3   4   5   6
Bog'liq
Modelling2222

(3)

N

2

of jth neuron yj of vector Y are computed by means of the weighted sum of input elements x and w:

As mentioned, an over-fitting of the trained network is possible if obtained MSE value is low. This further indicates that ANN only works well in the training stage, but not in validation and testing phase. To mitigate this a regression is performed along with computed R-value which dem­onstrates the goodness of fitting between the predicted and the desired outputs [18]. The plot is useful in examin­ing the fitting performance. If poor fitting (low R-value) is obtained, further trainings are required with modification of hidden layers and neurons.
As mentioned, another way of measuring ANN perfor­mance is to tabulate the error histogram. The error histo­gram demonstrates how the errors are distributed with most errors are occurred near zero. The error is simply the difference between the targeted outputs tj
and the pre­dicted outputs y,j.
In order to verify ANN's performance in terms of clas­sifications, a confusion matrix (also known as error matrix) is used. A confusion matrix of a binary classification, is a two-by-two table showing values of True Negatives (TN), False Negatives (FN), True Positives (TP) and False Posi­tives (FP) resulting from predicted classes of data [19, 20]. The confusion matrix allows the measures of rates such as prediction accuracy, error rate, sensitivity, specificity and precision [19], which are included in this paper (Refer [21] for calculations of the rates derived from confusion matrix). Furthermore, a Receiver Operating Characteristic

and in contrast, becomes gradient descent algorithm when f is large. Therefore, f is adjusted at every iteration in order to guide the optimisation process and switched between those two algorithms.
The number of neuron in the output layer is the result­ant decision prediction of the problem [4]. The output layer consists collections of vector Y, which is the collec­tion of predicted CGPA.

Download 302,61 Kb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish