STATIK ANIQLANGAN TEKIS FERMA STERJENLARINING
ZO’RIQISHLARINI ANIQLASH
Raximova X. (assistent, SamDU)
Statik aniqlangan tekis ferma qo‘zg‘aluvchi A sharnir va qo‘zg‘almas B sharnirlarga tayangan.
Fermaning C tuguniga F=10 kN kuch vertikal ravishda qo‘yilgan. O‘lchamlar metrlarda berilgan.
Ferma sterjenlaridagi zo‘riqishlarni topamiz (1-rasm).
Fermaning tayanch reaksiya kuchlarini aniqlaymiz [1-2]. Tayanch sharnirlaridagi
bog‘lanishlarni tashlab yuborib, ularni X
B
, Y
A
, Y
B
tayanch reaksiya kuchlariga almashtiramiz.
Koordinata sistemasining boshi sifatida A nuqtani tanlaymiz. Uchta muvozanat tenglamasini tuzamiz:
;
0
F
Y
Y
Y
B
A
i
;
0
2
4
F
M
B
A
.
0
2
4
F
M
A
B
a)
b)
1-rasm. Tadqiqot obyekti (a) va tayanch reaksiya kuchlari (b).
Bu tenglamalar sistemasini yechib, tayanch reaksiya kuchlarini topamiz:
,
5
2
kN
F
A
kN
B
5
Vertikal kuchlarni tekshirish uchun fermaga ta‘sir qilayotgan barcha kuchlarni y o‘qiga proyeksiyalari
yigindisini tuzamiz;
.
0
5
5
B
A
i
Tenglama aynan qanoatlantiriladi. Y
A
va Y
B
reaksiya kuchlari to‘g‘ri topilgan.
Ferma sterjenlaridagi S
i
zo‘riqishlarni aniqlaymiz. Ferma sterjenlarini raqamlaymiz. S
1
, S
3
zo‘riqish kuchlarini A tugundan aniqlaymiz.
;
0
i
X
0
cos
3
1
S
S
;
;
0
i
Y
;
0
sin
3
S
Y
A
Bu yerdan
,
5
1
kN
S
kN
S
2
5
3
.
7
4
, S
S
zo‘riqish kuchlarini esa C tugundan aniqlaymiz:
;
0
i
X
;
0
sin
45
cos
7
0
3
S
S
;
0
i
Y
;
0
cos
45
cos
7
0
3
4
S
S
S
Bu yerdan
,
2
5
5
7
kN
S
kN
S
10
4
.
5
S
va
6
S
zo‘riqish kuchlarini D tugundan aniqlaymiz:
;
0
i
X
;
0
cos
sin
5
6
7
S
S
S
;
0
i
Y
0
sin
cos
5
7
S
S
Bunda
,
5
1
sin
,
5
2
cos
,
5
2
sin
.
5
1
cos
26
Bu yerdan
,
kN
2
5
5
5
7
S
S
kN
2
5
5
5
S
,
kN
5
6
S
.
Kesilgan sterjenlardagi reaksiya kuchlarini tugundan yo‘naltiramiz. Bu sterjenlarning
cho‘zilishida zo‘riqishlari musbat, siqilishida esa manfiy deb qabul qilingan qoidaga mos keladi.
B tugundagi muvozanat tenglamasi quyidagicha:
.
0
;
3
2
B
i
B
i
S
X
S
X
Bu yerdan
0
2
B
X
S
kN,
5
6
B
Y
S
kN ni topamiz.
Ushbu masalani Maple matemaik paketidan foydalanib yechish uchun LinearAlgebra paketning
LinearSolve operatoridan foydalanamiz [1-2]. Dastur Maplet ko‘rinishida tuzildi. Uning natijasi
vizuallashtirildi. Hisob natijalari 2-rasmda tasvirlangan.
2-rasm. Maplet dastur natijasi.
Adabiyotlar:
1. Кирсанов М.Н. Maple и Maplet. Решения задач механики: Учебное пособие. - СПб.:
Издательство «Лань», 2012. - 512 с.
2. Кирсанов М.Н. Решебник. Теоретическая механика/ Под ред. А.И.Кириллова. - М.:
ФИЗМАТЛИТ, 2002. - 384 с.
PECULIARITIES OF BEHAVIOR AND DESIGN OF LARGE SIZE PANEL SHELLS
WITH THE USE OF THE BENDING THEORY
Razzakov N.S., Sanaeva N.P. assistants
(Samarkand State Architectural and Civil cine Engineering Institute)
Annotation
When calculating large size plate shells, the bending theory is used, which can be acceptable
only for estimation of their behavior under low levels of loading.
We are going to consider the behavior of long-span multivalve plate shells. With some
assumption, they can de considered by V.Z. Vlasov‘s bending theory, [1] as gently sloping stretched in
one direction, the shell of the Gauss positive curvature.
The results of the experimental researches, carried out by M.S. Rokhal [2] (Fig.1) showed that
the given method of calculation is acceptable only for estimation of their behavior under low levels
of loading. In this connection we make calculation on the non-linear theory on the basis of work [3.4]
with introduction of corresponding assumptions and prerequisites for the improvement of such
method of design. [2.4].
The system of coordinates is taken in parallels to planes of the main survace curvature, then the
force is N
xy
=0. The plane of the corrugated symmetry in a coordinate plane xz is kept/
As the initial, we take differential dependences for description of state of stress and strain of
gently sloping non-elastic shells under large deformations [2,3,4]
;
0
,
2
2
2
q
L
D
к
(1)
27
;
0
,
2
1
2
2
2
L
B
k
where –
2
3
1
12
/
Eh
D
cylinder rigidity
Eh
Â
/
1
axial rigidity (compression stretching )
2
2
2
2
2
y
x
- Laplas operator
2
2
2
2
2
1
2
x
K
y
K
k
- Vlasov operator
;
2
)
,
(
2
2
2
2
2
2
2
2
2
2
x
y
y
x
y
x
y
x
L
2
2
2
2
2
2
)
,
(
y
x
y
x
L
- non- linear operators
,
- function of stresses and deflection
h - thickness of a shell
E – modulus of elasticity
v - the Puasson coefficient
Fig-1 Diagram of deforming and fracture of a plate shell
a)
– local diagram of destruction
b)
– dependence of the level of loading from the deflection of a plate
c)
– dependence of the level of loading from the deformation of a plate
d)
– deflection in cross direction
e)
- deflection in a longitudinal direction.
;
2
2
1
y
z
K
2
2
2
x
z
K
- shell curvature.
In order to take a system [2] of coordinates, a uniform loading is presented in the kind of double
row [5]
m
n
l
y
in
l
x
im
m n
e
e
q
q
2
1
(2)
The function of stresses and deflections can be presented by double row with indeterminate
coefficients =
m n
l
y
in
l
x
im
mn
e
e
A
2
1
m n
l
y
in
l
x
im
mn
e
e
B
2
1
(3)
Here l
1
– the length of a plate shell, l
2
– the width of a plate shell. When …… the loading in
view of coefficient of a row
mn
q
we have the following formula of double rows:
2
1
2
2
sin
2
sin
4
l
y
in
l
x
im
m
n
e
e
mn
n
m
P
q
(4)
Further , by using the method of Bubnov – Galerkin, we determine the coefficient A
mn
, B
mn
.
These formulas are bulky ones and they are not given here. So, coefficients of double rows,
representing the functions of stresses and deflections become definite,
;
cos
cos
4
2
1
1
1
l
x
n
l
x
m
А
m
n
mn
2
1
1
1
cos
cos
4
l
x
n
l
x
m
B
m
n
mn
( 5)
28
By using the known dependences we determine membrane and bending forces
,
2
2
1
y
N
N
x
2
2
2
x
N
N
y
,
y
x
S
N
xy
2
;
2
2
2
2
1
y
v
x
D
M
;
2
2
2
2
2
x
v
y
D
M
y
x
v
D
H
2
)
1
(
(6)
We receive the rows, determining forces
;
cos
cos
4
2
1
1
1
2
1
2
2
l
y
n
l
x
m
А
l
n
N
m
n
mn
1
(7)
;
cos
cos
4
S
2
1
1
1
2
1
2
2
l
y
n
l
x
m
А
l
l
mn
m
n
m n
(8)
;
cos
cos
4
M
2
1
1
1
2
2
2
2
2
1
2
2
1
l
y
n
l
x
m
l
n
v
l
m
DB
m
n
m n
(9)
;
sin
sin
)
1
(
4
H
2
1
2
2
1
1
1
l
l
mn
l
y
n
l
x
m
B
y
D
m
n
m n
(10)
And rows, determining displace ments
;
cos
cos
4
2
1
1
1
l
y
n
l
x
m
B
m
n
mn
(11)
;
cos
sin
4
2
1
1
1
2
1
2
2
1
2
1
l
y
n
l
x
m
A
l
m
v
l
n
Ehm
l
u
m
n
m n
(12)
;
sin
cos
4
2
1
1
1
2
2
2
2
1
2
2
l
y
n
l
x
m
A
l
n
v
l
n
Ehn
l
m
n
m n
(13)
The system of equation (1) has the structure received [2] in conformity with the corresponding
problem of plastic flow. For their solutions, as it is indicated in [2], it is convenient to use the methods
of sequence of approximations and variable parameters of elasticity.
In the first, approximation under a low level of loading, the problem is solved linearly. In this,
in equation (1), non-linearly, function is absent. The way of solving the sequence of approximations is
taken analogically to work [2].
In designs, the module of concrete deformation under various level of loadings is taken as
variable, its value is designed according to the formulas, given in the work [2].
In calculation, the use of expressions [7-13], reguires working hours, even for the linear
problems. In counection with calculations, we use the table data, proposed in works [4,5].
Then the value of forces and displacements in a plate of shell are determined on the formulas:
Membrane forces:
1
1
1
N
qR
N
;
2
2
2
N
qR
N
;
12
12
12
S
qR
S
(14)
Moment of forces:
1
1
1
M
qS
M
;
2
2
2
M
qS
M
;
12
12
12
M
qS
H
(15)
Displacements
u
Eh
S
qR
u
2
;
v
Eh
S
qR
v
2
;
Eh
S
qR
2
(16)
The undimensional coefficient of forces and displacement
1
N
…,
1
M
…,
u
;
v
,
are
determined for each kind and level of loading independence of a variant bordering conditions and as
well as combination of
,
,
values, which are designed for the researched point of a plate shell
or determined according to the tables (4,5,6).
We consider a numerical example.
It is necessary to calculate the deflection of extreme and average plate shells of the positive
Gauss curvature with sides L
1
=3600 and L
1
=600 mm. in the structure of a coating fragment
29
3600x1800 mm and to fulfill comparison with the experimental data at a various level of loading in
elastic and non-elastic stage taking into account elastic properties of reinforced concrete [2,6].
We calculate initial parameters:
;
167
,
0
3600
600
2
1
l
l
;
0687
,
0
2
,
1354
0
,
93
2
1
R
R
182
,
5
76
,
0
2
h
R
S
;
;
0144
,
0
1
l
S
The results of calculation on the stated formulas 6…13 and 16 are shown in Table I.
Except for deflection on the expressions (7-10) and (14-15), the value of bending moments m,
M
2
, H, longitudinal force n
1
, and n
2
and as well as the moving force S.
The designed and experimental deflections of the middle of their span in cross direction
(x=0,51) are given in Table I.
q.
kh m
2
Deflection, mm
Relative coordinates y/l
1
of the average points of cross section of plate
shells
Extreme plate
Average plate
0
0,125 0,250 0,375 0,500 0
0,125 0,250 0,375 0,500
2,96
According to the
experiment
2,47 2,2
1,75
1,4
0,9
1,35 1,30
1,27
1,22
1,20
Estimation on the
elastic stage
2,36 2,17
1,68
1,35
0,52
1,24 1,16
1,07
1,05
0,97
In view of non
elastic properties
2,6
2,4
2,0
1,8
0,7
1,5
1,44
1,36
1,30
1,22
8,15
According to the
experiment
10
8,7
7,5
6,7
4,2
6,2
5,8
5,3
5,0
4,85
Calculation on the
elastic stage
4,5
4,1
3,85
3,4
1,8
2,96 2,7
2,5
2,4
2,1
In view of non-
elastic properties
10,7 9,2
8,1
7,3
4,0
7,0
6,3
5,4
5,1
4,7
With the use of the studied large size plate shells with metallic contour diaphragms be the size
of 3x18 m, a comparative analysis is carried out for the hall premises of public buildings with sizes of
18x36m [7].
At the same useful loading 4,2 kN/m, seismic intensity of 8 magnitudes for a building with the
use of standard solution of the reinforced concrete flat coating, of a sloping reinforced concrete shell
of the positive Gauss curvature and a large size plate with size on the span of a building, the
expenditure of the materials made 1 m
2
of recovering space of coating accordingly:
Concrete – 25,3, 19,7 and 13,2 sm have become accordingly 25,5, 11,8 and 19,8 kg. In this case,
the amount of coating with the use of large size plates shells are reducing to 60% in comparison of
flatwork reinforced concrete coatings.
It allows to introduce in coating of hall premises of public buildings both reinforced and steel
reinforced large size plates shells with steel diaphragms alongside with effective shell construction.
List of bibliography
1. Vlasov V2. Basic theory of shells. M. Gostexhizdat, 1949. p.784.
2. Razzakov S.R. Composite reinforced concrete shells of building coating in the condition of
long duration maintenance and seismic forces. Tashkent, Fan 2004, p 380.
3. Volmir A.S. Stability of a deforming system M., Nauka, 1967, p.984.
4. Bartenev V.S. Practical way of designing of gently sloping reinforced concrete shells of the
positive Gauss curvature on a rectangular plan.
In the Proceedings of ―Thin wall reinforced concrete spatial constructions M., Stroiizdat, 1970,
p.38-70.
5. Garanin A.S. Design of gently sloping shells. M., Stroiizdat, 1964, p.95.
6. Tseitlin: Precast reinforced concrete corrugated coating. Kiev. Budevelnik, 1978. P.152.
7. Razzakov N.S.Samarkand 2013. Modern problems of building materials and constructions.
p.p. 292-296.
Do'stlaringiz bilan baham: |