Milliy universitetining jizzax filiali kompyuter ilmlari va muhandislik texnologiyalari


CONDITIONAL RANDOM FIELD PREDICTION MODEL FOR



Download 6,59 Mb.
Pdf ko'rish
bet68/188
Sana10.11.2022
Hajmi6,59 Mb.
#862908
1   ...   64   65   66   67   68   69   70   71   ...   188
Bog'liq
O\'zmuJF 1-to\'plam 07.10.22

CONDITIONAL RANDOM FIELD PREDICTION MODEL FOR 
SEGMENTING BREAST MASSES FROM DIGITAL MAMMOGRAMS 
Fazilov Shavkat Khayrullaevich
I
, Abdieva Khabiba Sobirovna
II 

Professor, Research Institute for Development of Digital Technologies and 
Artificial Intelligence, 
sh.fazilov@mail.ru

II
PhD student, Department of Software Engineering, Samarkand State 
University, 
orif.habiba1994@gmail.com

 
Abstract. 
The segmentation of masses from mammograms is a difficult 
challenge due to their variety in shape, appearance, and size, as well as their low 
signal-to-noise ratio.. 
Key words:
segmentation, CRF, prediction model, mammogram, computer-
aided diagnosis systems 
Assume that we have an annotated dataset 
D
including images of the region 
of interest (ROI) of the mass, represented by 
𝑥: 𝛺 → 𝑅(𝛺 ∈ 𝑅
2
)
, and the 
respectively manually provided segmentation mask 
𝑦: 𝛺 →
{-1,+1}, where 
D
=
(𝑥, 𝑦)
𝑖=1
|𝐷|
. Also assume that the parameter of our structured output prediction 
model is denoted by 
𝜃
and the graph 
𝐺 = (𝑉, 𝐸)
links the image 
𝑥
and labels 
𝑦

where 
𝑉
is the set of graph nodes and 
𝐸
, the set of graph edges. The process of 
learning the parameter of structured prediction mode is done through the 
minimization of the following empirical loss function: 
𝜃

= 𝑎𝑟𝑔 min
𝜃
1
|𝐷|

𝑙(𝑥
𝑖
, 𝑦
𝑖
, 𝜃)
𝐷
𝑖=1
, (1) 
here 
𝑙(𝑥, 𝑦, 𝜃)
is a continuous and convex loss function being minimized that 
defines the structured model. We use CRF formulation for solving (1). In particular, 
the CRF formulation uses the loss: 
𝑙(𝑥
𝑖
, 𝑦
𝑖
, 𝜃) = 𝐴(𝑥
𝑖
, 𝜃) − 𝐸(𝑦
𝑖
, 𝑥
𝑖
; 𝜃)
,
(2) 


118 
here 
𝐴(𝑥, 𝜃) = 𝑙𝑜𝑔 ∑
exp {𝐸(𝑦, 𝑥; 𝜃)}
𝑦∈{−1,+1}
|𝛺|×|𝛺|
is the log-partition 
function that ensures normalization, and 
𝐸(𝑦, 𝑥; 𝜃) = ∑

𝜃
1,𝑘
𝜓
(1,𝑘)
(𝑦(𝑖), 𝑥)
𝑖∈𝑉
+
𝐾
𝑘=1


𝜃
2,𝑘
𝜓
(2,𝑘)
(𝑦(𝑖), 𝑦(𝑗), 𝑥)
𝑖,𝑗∈𝐸
𝐿
𝑙=1
, (3) 
In(3) 
𝜓
(1,𝑘)
(. , . )
denotes one of the 

potential functions between label and 
pixel nodes, 
𝜓
(2,𝑘)
(. , . )
representing one of the L potential functions on the edges 
between label nodes, 
𝜃 = [𝜃
1,1
, … 𝜃
1,𝐾
, … 𝜃
2,𝐿
]
𝑇
∈ 𝑅
𝐾+𝐿
, and 
𝑦(𝑖)
being the 
𝑖
𝑡ℎ
component of vector 
y. 
Conditional Random Field. The solution of (1) using the CRF loss function in 
(2) involves the computation of the log-partition function 
𝐴(𝑥, 𝜃)
.The tree re-
weighted belief propagation algorithm provides the following upper bound to this 
log-partition function: 
𝐴(𝑥, 𝜃) = max
𝜇∈𝑀
𝜃
𝑡
𝜇 + 𝐻(𝜇)
, (4) 
here 
𝑀 = {𝜇́: ∃𝜃, 𝜇́ = 𝜇}
denotes 
the 
marginal 
polytope, 
𝜇 =

P(𝑦|𝑥, 𝜃)𝑓(𝑦)
𝑦∈{−1,+1}
|𝛺|×|𝛺|
, with 
𝑓(𝑦)
denoting the set of indicator functions of 
possible configurations of each clique and variable in the graph(as denoted in(3)), 
P(𝑦|𝑥, 𝜃) = exp {𝐸(𝑦, 𝑥; 𝜃) − 𝐴(𝑥, 𝜃)}
indicating the conditional probability of the 
annotation 

given the image 

and parameters 
𝜃
(where we assume that this 
conditional probability function belongs to the exponential family ), and 
𝐻(𝜇) =
− ∑
P(𝑦|𝑥, 𝜃)𝑙𝑜𝑔P(𝑦|𝑥, 𝜃)
𝑦∈{−1,+1}
|𝛺|×|𝛺|
is the entropy. 
It is important to note that for general graphs with cycles (as in this study), 
the marginal polytope 
M
is difficult to describe and the entropy 
𝐻(𝜇)
is not tractable. 
TRW addresses these concerns by first replacing the marginal polytope with a 
superset


M
that only accounts for the marginals local constraints, and then 
approximating the entropy calculation with an upper bound. Specifically,
𝐿 = {𝜇: ∑
𝜇(𝑦(𝑐)) =
𝑦(𝑐|𝑦(𝑖)
𝜇(𝑦(𝑖)), ∑
𝜇(𝑦(𝑖)) = 1
𝑦(𝑖)
}
, (5) 
replaces 

in (5) and represents the local polytope (with 
𝜇(𝑦(𝑖)) =
∑ 𝑃(𝑦́|𝑥), 𝜃)𝛿(𝑦́(𝑖) − 𝑦(𝑖))
𝑦́
and 
𝛿(. )
is the Dirac delta function), 
c
indexes a graph 
clique, and the entropy approximation(that replaces 
𝐻(𝜇)
in (5) is defined by) 
𝐻
̃
(
𝜇
)=

𝐻 (𝜇(𝑦(𝑖))) − ∑
𝐼(𝜇(𝑦(𝑐)))
𝑦(𝑐)
𝑦(𝑖)
, (6) 
where
𝐻 (𝜇(𝑦(𝑖)))
=-

𝜇(𝑦(𝑖))𝑙𝑜𝑔𝜇(𝑦(𝑖))
𝑠(𝑖)
is the univariate entropy of 
variable 
y(i)

𝐼 (𝜇(𝑦(𝑐))) = ∑
𝜇(𝑦(𝑖))𝑙𝑜𝑔
𝜇(𝑦(𝑐))

𝜇(𝑦(𝑖))
𝑖∈𝑐
𝑦(𝑐)
is the mutual information 
of the cliques in our model, and 
𝜌
𝑐
is a free parameter providing the upper bound on 
the entropy. Therefore, the estimation of 
𝐴(𝑥; 𝜃)
and associated marginal in (5) is 
based on the following message-passing updates: 


119 
𝑚
𝑐


exp {
1
𝜌
𝑐
𝜓
𝑐
(𝑦(𝑖), 𝑦(𝑗); 𝜃)}
𝑦(𝑐)\𝑦(𝑖)
∏ exp {
1
𝜌
𝑐
𝜓
𝑖
(𝑦(𝑖), 𝑥; 𝜃)}
𝑗∈𝑐\𝑖

𝑚
𝑑
(𝑠(𝑗))
𝜌𝑑
𝑑;𝑗∈𝑑
𝑚
𝑐
(𝑠(𝑗))
(7) 
where 
𝜙
𝑖
(𝑦(𝑖), 𝑥; 𝜃) = ∑
𝑤
1,𝑘
𝜓
(1,𝑘)
(𝑦(𝑖), 𝑥)
𝐾
𝑘=1
and 
ψ
𝑐
(𝑦(𝑖), 𝑦(𝑗); 𝜃) =

𝑤
2,𝑘
𝜓
(2,𝑘)
(𝑦(𝑖), 𝑦(𝑗), 𝑥)
𝐿
𝑙=1
. When the message-passing algorithm converges, the 
beliefs for the associated marginals are expressed as follows: 
𝜇
𝑐
(𝑦(𝑐))∞
1
𝜌
𝑐
𝜓
𝑐
(𝑦(𝑖), 𝑦(𝑗)) ∏ 𝜓
𝑖
(𝑦(𝑖), 𝑥; 𝜃)}
𝑖∈𝑐

𝑚
𝑑
(𝑦(𝑗))
𝜌
𝑑
𝑑;𝑗∈𝑑
𝑚
𝑐
(𝑦(𝑖))
𝜇
𝑖
(𝑦
𝑖
)∞exp (𝜓
𝑖
(𝑦(𝑖), 𝑥; 𝜃)) ∏
𝑚
𝑑
(𝑦(𝑖))
𝜌
𝑑
𝑑;𝑖∈𝑑
, (8) 
The learning process involved in the assessment of 
θ
is typically based on 
gradient descent that minimizes the loss in (2) and should run until convergence, 
which is characterized by the change rate of 
θ
between successive gradient descent 
iterations. 

Download 6,59 Mb.

Do'stlaringiz bilan baham:
1   ...   64   65   66   67   68   69   70   71   ...   188




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish