“A” guruh Funksional qatorlarni yaqinlashish sohasini toping. 12.133.
...
...
1
n x x 12.134.
...
ln
...
ln
ln
2
x x x n 12.135.
...
...
2
4
n x x x 12.136.
...
...
2
2
2
2
n x x x n 12.137.
...
...
2
2
n x x x n 12.138.
...
1
1
...
1
1
1
1
2
n x x x 12.139.
...
1
...
6
2
2
n x n n x x 12.140.
...
...
2
2
2
2
n n x x x n 12.141.
...
1
...
1
1
2
4
2
2
n n x x x x x x 12.142.
...
2
sin
...
4
sin
2
sin
2
n x n x x 12.143.
...
2
...
4
2
2
n n tg x x tg x x xtg
12.144.
...
sin
...
2
2
sin
sin
2
2
n nx x
12.145.
...
cos
...
2
cos
cos
2
nx x x e nx e x e x 12.146.
...
...
2
4
x n x x e e e 12.147.
...
...
2
2
nx x x x e nx e e x 12.148.
...
!
sin
...
!
1
sin
1
n nx x 12.149.
1
2
2
1
1
n nx n 12.150.
1
2
sin
n n nx 12.151.
1
1
3
n n n x n n Quyidagi qatorlarning yaqinlashish intervali aniqlansin va qatorlar intervalning chegaralarida ham yaqinlashishi tekshirilsin: 12.152.
...
4
3
3
3
2
3
1
3
3
2
2
x x x 12.153.
...
4
5
3
5
2
5
1
3
5
2
3
2
x x x 12.154.
...
3
7
8
3
5
4
2
3
2
1
3
2
3
2
2
2
2
x x x 12.155.
1
!
n n n x 12.156.
1
1
n n n x 12.157.
1
2
3
3
3
n n n n n x 12.158. 1)
1
1
!
n n n x ; 2)
1
1
!
n n n n x n
12.159.
...
4
4
1
4
3
1
4
2
1
1
3
4
2
3
2
x x x x 12.160.
...
5
3
2
3
3
2
1
3
2
3
2
x x x Darajali qatorlar. Abel teoremasi. Yaqinlashish radiusi. Yaqinlashuvchi darajali qatorlarning xossalari. Qatorlarni differentsiallash va integrallash. Quyidagi qatorlarning yaqinlashish intervallari aniqlansin va yig’indilari topilsin :
12.161.
...
4
3
2
1
3
2
x x x 12.162.
...
7
5
3
7
5
3
x x x x 12.163.
...
7
5
3
1
3
2
x x x 12.164.
...
3
2
1
2
1
2
1
1
1
1
3
2
x m m m x m m x m Quyidagi qatorlarning yaqinlashish intervali aniqlansin va qatorlarning intervalning chegaralarida ham yaqinlashishlari tekshirilsin: 12.165.
...
5
13
8
5
9
4
5
5
2
1
3
3
2
2
x x x 12.166.
...
4
4
3
3
3
3
2
2
3
1
3
6
2
4
2
x x x 12.167.
1
10
n n n n x 12.168.
1
1
2
1
1
2
1
n n n n x 12.169.
...
2
5
3
2
3
1
2
1
1
3
3
2
2
x x x 12.170.
...
7
1
2
4
1
2
1
1
2
3
2
x x x “B” guruh Quyidagi qatorlarning yaqinlashish intervallari aniqlansin va ularning yig’indilari topilsin: 12.171.
...
7
5
3
1
6
4
2
x x x 12.172.
...
3
2
3
2
x x x 12.173.
...
10
7
4
1
3
2
x x x Quyidagi qatorlarning yaqinlashish intervallari aniqlansin :
12.174.
...
5
4
4
3
3
2
2
1
4
3
2
x x x x 12.175.
1
1
2
n n n x 12.176.
1
n n n x 12.177.
1
!
n n x n 12.178.
...
13
8
9
8
5
8
8
4
12
3
9
2
6
3
x x x x 12.179.
1
10
n n n x Funksional qatorlarni yaqinlashish sohasini toping 12.180.
...
...
2
2
2
2
n n x x x n 12.181.
...
1
...
1
1
2
4
2
2
n n x x x x x x 12.182.
...
2
sin
...
4
sin
2
sin
2
n x n x x 12.183.
...
2
...
4
2
2
n n tg x x tg x x xtg
12.184.
...
sin
...
2
2
sin
sin
2
2
n nx x
12.185.
...
cos
...
2
cos
cos
2
nx x x e nx e x e x 12.186.
...
...
2
4
x n x x e e e 12.187.
...
...
2
2
nx x x x e nx e e x 12.188.
...
!
sin
...
!
1
sin
1
n nx x 12.189.
1
2
2
1
1
n nx n 12.190.
1
2
sin
n n nx 12.191.
1
2
2
2
n n n x e
“C” guruh 12.192.
...
3
2
3
2
3
2
3
3
3
2
2
2
x x x 12.193.
1
1
n n n tg x 12.194.
...
!
4
5
!
3
5
!
2
5
5
4
4
3
3
2
2
x x x x 12.195.
1
1
1
n n n n x 12.196.
...
)
2
(
...
4
2
3
1
2
n n x x x n 12.197.
1
1
3
n n n n x 12.198.
1
1
2
1
5
1
n n n n n x 12.199.
1
2
2
n n n x 12.200.
1
2
1
1
n n n x n 12.201.
1
1
1
2
1
3
1
n n n n n n x 12.202.
1
1
3
!
)
1
(
2
n n n n x n 12.203
1
2
2
2
1
5
)
2
3
(
n n n n x n 12.204.
1
2
1
1
sin
n n x n 12.205.
1
2
1
3
n n n n x