Trigonometrik tengsizliklar
x arcSina 2nπ ;π arcSina 2nπ ;
x π arcSina 2nπ ;arcSina 2nπ ;
Cosx a
Cosx a
a 1 ,
a 1 ,
x arcCosa 2nπ ;arcCosa 2nπ ;
x arcCosa 2nπ ;2π arcCosa 2nπ ;
tgx a
a R ,
x arctga nπ ; π nπ ;
2
tgx a
a R ,
x π nπ ; arctga nπ ;
2
ctgx a
a R ,
x nπ ;
arcctga nπ ;
ctgx a
a R ,
x arcctga nπ ;
nπ . (Bu yerda n Z .)
Ba’zi trigonometrik ayniyatlar
1. sin x sin(60 x)sin(60 x) 1 sin 3 x .
4
2. 16 Sin10 0 Sin30 0 Sin50 0 Sin70 0 Sin90 0 1.
3. 16 Cos80 0Cos60 0 Cos40 0Cos20 0Cos0 0 1.
4. 16 Sin20 0 Sin40 0 Sin60 0 Sin80 0 3.
π C
|
os 4π C
|
os 5π
|
1
|
|
.
|
7
|
7
|
7
|
8
|
|
|
π C
|
os 2π C
|
os 4π
|
|
|
1
|
7
|
7
|
7
|
|
|
8
|
π C
|
os 3π C
|
os 5π
|
|
|
1
|
7
|
7
|
7
|
|
|
8
|
5. 16 Cos10 0 Cos30 0Cos50 0 Cos70 0 3.
6. Cos
7.
Cos .
Cos .
Cos 2π Cos 4π Cos 6π 1 .
7 7 7 8
5 5 4
Cosπ Cos 3π 1 .
5 5 2
Sin π
4 n
Sin 3π
4 n
Sin 5π
4 n
Sin (2n 1)π 2 .
4 n 2 n
Cosx Cos2 x Cos4 x ... Cos2 n
x 1
2n1
Sin2 n1 x
.
Sinx
Sin nx Cos (n 1)x
Cosx Cos2 x ... Cosnx
2 2 .
Sin x
2
Teskari trigonometrik funksiyalar orasidagi bog‘lanishlar
arcSinx arcCosx π ; arctgx arcctgx π
2 2
arcSin( x) arcSinx; arcCos( x) π arcCosx .
arctg(x) arctgx;arcctg(x) π arcctgx .
arcSinx π
2
arcCosx π
2
Trigonometrik va teskari trigonometrik funksiyalar orasidagi bog‘lanishlar
1. SinarcSinx x ,
x 1;1. 2.
arcSin(Sinx) x , x π ; π .
2 2
3. Cos arcCosx x ,
x 1;1. 4.
arcCos(Cosx) x ,
x 0;π .
5. arctg(tgx) x,
x π ; π . 6. tg(arctgx) x,
x R .
2 2
7. arcctg(ctgx) x,
x 0;π . 8.
ctg(arcctgx) x,
x R .
9. SinarcCosx
, x 1;1. 10. Cos arcSinx
1 x2 , x 1;1.
11.
13.
Sinarctgx
Sinarcctgx
x . 12. Cos arctgx 1 .
1 . 14. Cos arcctgx x .
15. tg arcSinx
17. tg arcSinx
x , x 1;1. 16. tg arcSinx
x , x 1;1. 18. tg arcSinx
x , x 1;1,
x , x 1;1.
19.
Sinarcctgx
1 . 20.
Sinarcctgx 1 .
Teskari trigonometrik funksiyalar yig‘indisi
arcSinx arcSiny arcCosx(
arcSinx arcSiny arcCosx(
arcSinx arcSiny arcCosx(
arcSinx arcSiny arcCosx(
arcCos xy
arcCosx arcCosy
arcCos xy
, x y,
, x y.
arctgx arctgy arctg
x y ,
1 xy
xy 1.
arctgx arctgy arctg
x y ,
1 xy
xy 1.
arcctgx arcctgy arcctg xy ∓ 1 , x y .
x y
Funksiya va uning asosiy xossalari
X sonlar to‘plamidan olingan x ning har bir qiymatiga biror qonuniyat yoki qoida yordamida Y sonlar to‘plamidan olingan yagona y qiymat mos kelsa, bunday
moslik funksiya deyiladi va
y f (x)
ko‘rinishida belgilanadi.
X to‘plam funksiyaning aniqlanish sohasi deyiladi va belgilanadi.
Y to‘plam esa funksiyaning qiymatlari to‘plami deyiladi va
belgilanadi.
Do'stlaringiz bilan baham: |