Microsoft Word Formula kitobcha


Ko‘paytmani yig‘indiga keltirish



Download 0,55 Mb.
bet10/19
Sana29.05.2022
Hajmi0,55 Mb.
#614759
1   ...   6   7   8   9   10   11   12   13   ...   19
Bog'liq
Formula-kitobcha

Ko‘paytmani yig‘indiga keltirish





  1. SinxCosy 1 Sin x y Sin x y .

2

  1. CosxCosy 1 Cos x y Cos x y .

2

  1. SinxSiny 1 Cos x y Cos x y .

2


Yarim burchak formulalari





  1. Sinα

2
  ,
Cosα
2
  .

  1. tg α

2
1 Cosα
Sinα
Sinα .
1  Cosα


  1. ctg α

2
1 Cosα
Sinα
Sinα .
1  Cosα




Cos2α 1  Cos2α ,
2
Cos3α 3Cosα Cos3α ,
4

Darajani pasaytirish




Sin2α 1  Cos2α .
2
Sin3α 3sinα  sin 3α .
4

Sinx, Cosx, tgx va ctgx larni
tg x
2

orqali ifodasi


Sinx
2tg(x / 2) ;
1  tg 2 (x / 2)
tgx
2tg(x / 2) ;
1  tg 2(x / 2)

1  tg 2(x / 2)
Cosx 1  tg 2 (x / 2) ;
ctgx
1  tg 2(x / 2)

.


2tg(x / 2)



Trigonometrik funksiyalarni birini ikkinchisi orqali ifodalash








sin x

cos x

tgx

ctgx

sin x



sin x



 1  cos2 x



tgx
 1  tg2 x

1
 1  ctg 2x

cos x



 1  sin2 x



cos x



1
 1  tg2 x

ctgx
 1  ctg 2x



tgx

sin x
 1  sin2 x

 1  cos2 x

cos x



tgx

1

ctgx



ctgx

 1  sin2 x

sin x

cos x
 1  cos2 x

1

tgx



ctgx



sec x

1
 1  sin2 x

1

cos x

 1  tg 2 x



 1  ctg 2x ctgx



csc x

1

sin x

1
 1  cos2 x

 1  tg2 x tgx

 1  ctg 2x



Keltirish formulalari

α

π x
2

π x

3π x
2

2π x

Sinα

Cosx

Sinx

Cosx

Sinx

Cosα

Sinx

Cosx

Sinx

Cosx

tgα

ctgx

tgx

ctgx

tgx

ctgα

tgx

ctgx

tgx

ctgx



Trigonometrik funksiyalarning ayrim burchaklardagi qiymatlari





Gradus
o‘lchovi

Radian
o‘lchovi

sin x

cos x

tgx

ctgx

sec x

csc x

0

0

0

1

0



1



300

π
6

1

2

3

2

3

3

3


2
3

2


450

π

4

2

2

2

2

1


1


2


2


600

π

3

3

2

1

2

3


3

3

2


2
3

900

π

2

1


0




0




1


1200

2π
3

3 2

1
2

 3



3
3

2


2
3

1350

3π
4

2 2

2
2

1


1


 2


2


1500

5π
6

1

2

3
2

3
3

 3



2
3

2


1800

π

0

1

0



1



2100

7π
6

1
2

3
2

3

3

3


2
3

2


2250

5π
4

2
2

2
2

1


1


 2


 2


2400

4π
3

3
2

1
2

3


3

3

2


2
3

2700

3π
2

1

0




0




1

3600

2π

0

1

0



1






Gradus
o‘lchovi

Radian
o‘lchovi

sin x

cos x

tgx

ctgx

150

π
12

3 1
2 2

3 1
2 2

2  3

2  3

180

π

5 1

5  5

5 1

10  2 5

10


4

2 2

10  2 5

5 1

360

π
5

5  5

5  1

10  2 5

5 1

2 2


4

5  1

10  2 5

540

3π

5  1

5  5

5 1

10  2 5

10


4

2 2

10  2 5

5  1

750

5π
12

3 1
2 2

3 1
2 2

2  3

2  3



Trigonometrik tenglamalar



  1. Sinx a,

a  1,
x 1n arcSina nπ ,
n Z ;

  1. Cosx a,

a  1,
x  arcCosa  2 ,
n Z .





a

Sinx a

Cosx a

0

x πk , k Z

x π 2 πk , k Z

1

x π 2  2πk , k Z

x  2πk , k Z

1

2

x 1k π πk , k Z
6

x  π 3  2πk , k Z

1
2

x 1k 1 π πk , k Z
6

x   2π 3  2πk , k Z

–1

x  π 2  2πk , k Z

x π  2πk , k Z

3

2

x 1k π πk , k Z
3

x  π 6  2πk , k Z

3
2

x 1k 1 π πk , k Z
3

x   5π 6  2πk , k Z

2

2

x 1k π πk , k Z
4

x  π 4  2πk , k Z

2
2

x 1k 1 π πk , k Z
4

x   3π 4  2πk , k Z




  1. tgx a,

x arctga ,
n Z ;

  1. ctgx a,

x arcctga ,
n Z .




a

tgx a

ctgx a

0

x πk , k Z

x π 2 πk , k Z

1

x π 4 πk , k Z

x π 4 πk , k Z

–1

x  π 4 πk , k Z

x 3π 4 πk , k Z

3

x π 3 πk , k Z

x π 6 πk , k Z

 3

x  π 3 πk , k Z

x 5π 6 πk , k Z

3
3

x π 6 πk , k Z

x π 3 πk , k Z

3 3

x  π 6 πk , k Z

x 2π 3 πk , k Z


  1. Sinx a

  2. Sinx a



a  1 , 
a  1 , 

Download 0,55 Mb.

Do'stlaringiz bilan baham:
1   ...   6   7   8   9   10   11   12   13   ...   19




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish