Ko‘paytmani yig‘indiga keltirish
SinxCosy 1 Sin x y Sin x y .
2
CosxCosy 1 Cos x y Cos x y .
2
SinxSiny 1 Cos x y Cos x y .
2
Yarim burchak formulalari
Sinα
2
,
Cosα
2
.
tg α
2
1 Cosα
Sinα
Sinα .
1 Cosα
ctg α
2
1 Cosα
Sinα
Sinα .
1 Cosα
Cos2α 1 Cos2α ,
2
Cos3α 3Cosα Cos3α ,
4
Darajani pasaytirish
Sin2α 1 Cos2α .
2
Sin3α 3sinα sin 3α .
4
Sinx, Cosx, tgx va ctgx larni
tg x
2
orqali ifodasi
Sinx
2tg(x / 2) ;
1 tg 2 (x / 2)
tgx
2tg(x / 2) ;
1 tg 2(x / 2)
1 tg 2(x / 2)
Cosx 1 tg 2 (x / 2) ;
ctgx
1 tg 2(x / 2)
.
2tg(x / 2)
Trigonometrik funksiyalarni birini ikkinchisi orqali ifodalash
|
sin x
|
cos x
|
tgx
|
ctgx
|
sin x
|
sin x
|
1 cos2 x
|
tgx
1 tg2 x
|
1
1 ctg 2x
|
cos x
|
1 sin2 x
|
cos x
|
1
1 tg2 x
|
ctgx
1 ctg 2x
|
tgx
|
sin x
1 sin2 x
|
1 cos2 x
cos x
|
tgx
|
1
ctgx
|
ctgx
|
1 sin2 x
sin x
|
cos x
1 cos2 x
|
1
tgx
|
ctgx
|
sec x
|
1
1 sin2 x
|
1
cos x
|
1 tg 2 x
|
1 ctg 2x ctgx
|
csc x
|
1
sin x
|
1
1 cos2 x
|
1 tg2 x tgx
|
1 ctg 2x
|
Keltirish formulalari
α
|
π x
2
|
π x
|
3π x
2
|
2π x
|
Sinα
|
Cosx
|
∓Sinx
|
Cosx
|
Sinx
|
Cosα
|
∓Sinx
|
Cosx
|
Sinx
|
Cosx
|
tgα
|
∓ctgx
|
tgx
|
∓ctgx
|
tgx
|
ctgα
|
∓tgx
|
ctgx
|
∓tgx
|
ctgx
|
Trigonometrik funksiyalarning ayrim burchaklardagi qiymatlari
Gradus
o‘lchovi
|
Radian
o‘lchovi
|
sin x
|
cos x
|
tgx
|
ctgx
|
sec x
|
csc x
|
0
|
0
|
0
|
1
|
0
|
–
|
1
|
–
|
300
|
π
6
|
1
2
|
3
2
|
3
3
|
3
|
2
3
|
2
|
450
|
π
4
|
2
2
|
2
2
|
1
|
1
|
2
|
2
|
600
|
π
3
|
3
2
|
1
2
|
3
|
3
3
|
2
|
2
3
|
900
|
π
2
|
1
|
0
|
–
|
0
|
–
|
1
|
1200
|
2π
3
|
3 2
|
1
2
|
3
|
3
3
|
2
|
2
3
|
1350
|
3π
4
|
2 2
|
2
2
|
1
|
1
|
2
|
2
|
1500
|
5π
6
|
1
2
|
3
2
|
3
3
|
3
|
2
3
|
2
|
1800
|
π
|
0
|
1
|
0
|
–
|
1
|
–
|
2100
|
7π
6
|
1
2
|
3
2
|
3
3
|
3
|
2
3
|
2
|
2250
|
5π
4
|
2
2
|
2
2
|
1
|
1
|
2
|
2
|
2400
|
4π
3
|
3
2
|
1
2
|
3
|
3
3
|
2
|
2
3
|
2700
|
3π
2
|
1
|
0
|
–
|
0
|
–
|
1
|
3600
|
2π
|
0
|
1
|
0
|
–
|
1
|
–
|
Gradus
o‘lchovi
|
Radian
o‘lchovi
|
sin x
|
cos x
|
tgx
|
ctgx
|
150
|
π
12
|
3 1
2 2
|
3 1
2 2
|
2 3
|
2 3
|
180
|
π
|
5 1
|
5 5
|
5 1
|
10 2 5
|
10
|
4
|
2 2
|
10 2 5
|
5 1
|
360
|
π
5
|
5 5
|
5 1
|
10 2 5
|
5 1
|
2 2
|
4
|
5 1
|
10 2 5
|
540
|
3π
|
5 1
|
5 5
|
5 1
|
10 2 5
|
10
|
4
|
2 2
|
10 2 5
|
5 1
|
750
|
5π
12
|
3 1
2 2
|
3 1
2 2
|
2 3
|
2 3
|
Trigonometrik tenglamalar
Sinx a,
a 1,
x 1 n arcSina nπ ,
n Z ;
Cosx a,
a 1,
x arcCosa 2 nπ ,
n Z .
a
|
Sinx a
|
Cosx a
|
0
|
x πk , k Z
|
x π 2 πk , k Z
|
1
|
x π 2 2πk , k Z
|
x 2πk , k Z
|
1
2
|
x 1k π πk , k Z
6
|
x π 3 2πk , k Z
|
1
2
|
x 1k 1 π πk , k Z
6
|
x 2π 3 2πk , k Z
|
–1
|
x π 2 2πk , k Z
|
x π 2πk , k Z
|
3
2
|
x 1k π πk , k Z
3
|
x π 6 2πk , k Z
|
3
2
|
x 1k 1 π πk , k Z
3
|
x 5π 6 2πk , k Z
|
2
2
|
x 1k π πk , k Z
4
|
x π 4 2πk , k Z
|
2
2
|
x 1k 1 π πk , k Z
4
|
x 3π 4 2πk , k Z
|
tgx a,
x arctga nπ ,
n Z ;
ctgx a,
x arcctga nπ ,
n Z .
a
|
tgx a
|
ctgx a
|
0
|
x πk , k Z
|
x π 2 πk , k Z
|
1
|
x π 4 πk , k Z
|
x π 4 πk , k Z
|
–1
|
x π 4 πk , k Z
|
x 3π 4 πk , k Z
|
3
|
x π 3 πk , k Z
|
x π 6 πk , k Z
|
3
|
x π 3 πk , k Z
|
x 5π 6 πk , k Z
|
3
3
|
x π 6 πk , k Z
|
x π 3 πk , k Z
|
3 3
|
x π 6 πk , k Z
|
x 2π 3 πk , k Z
|
Sinx a
Sinx a
a 1 ,
a 1 ,
Do'stlaringiz bilan baham: |