1. a f (x) 1 f ( x) 0.
2. f (x)g ( x) 1
f (x) 1,
g(x) R,
yoki
f (x) 0,
g(x) 0.
a f ( x ) ag ( x)
f ( x) g( x) ( a 0) .
a f ( x ) bg ( x)
f ( x) g( x) log a b
( a, b 0) .
a f ( x ) ag ( x)
0 a 1,
f ( x) g( x),
yoki
a 1,
f ( x) g( x).
6. a f (x) b, 0 a 1
b 0, a 1,
yoki
0 a 1, b 0,
a
a
f (x) log b, f (x) log b.
7. a f (x) b
b 0,
a 1,
yoki
b 0, 0 a 1,
a
a
f (x) log b, f (x) log b.
Logarifm va uning asosiy xossalari
b loga N
( a 0,
a 1,
N 0 )
N ab .
loga 1 0 , loga a 1,
alog aN
N ;
log (bc) log b log
c , log
b log b log c ;
a a a
a a
a c
a
log n
bm m log b ,
n a
log a b
1 ;
log b a
log c
log a c ,
log
b log c b ;
a
c
ba 1 log b a log a
b
b
loga b logc d loga d logc b ,
alog c
clog a ;
Agar
a 1, 0 b 1
yoki 0 a 1, b 1
bo‘lsa log a b 0 ;
Agar
a 1,
b 1
yoki 0 a 1,0 b 1
bo‘lsa log a b 0 ;
Agar
b a 1 bo‘lsa, log b p log a p
bo‘ladi ( p 0 );
Agar 0 a b 1 bo‘lsa, logb p loga p
bo‘ladi ( p 0 );
agar 0 p 1 bo‘lsa, log p a log p b
bo‘ladi,
agar
p 1 bo‘lsa, log p a log p b
bo‘ladi.
loga
f ( x) b
Logarifmik tenglama va tengsizliklar
f (x) ba .
f ( x) 0, 0 a 1,
log f ( x) a b
f ( x) 1,
1
a 0,
f (x) ab .
log
f ( x) log
g( x)
0 a 1,
f ( x) 0,
a a
0
f (x) g(x).
f (x) 1,
log f ( x) g(x) b
g( x)
f b ( x).
logϕ ( x)
f ( x) log ϕ ( x)
g( x)
0 ϕ( x) 1,
f ( x) g( x).
f ( x) 0,
log
f ( x) log
0 ϕ( x) 1,
g( x) f ( x) 0, yoki
ϕ( x) 1,
g ( x) 0,
ϕ ( x)
ϕ ( x)
f (x) g(x). f (x) g(x).
0
f (x) 1,
f (x) 1,
log
f ( x)
g( x) b
g( x) 0, yoki
g( x)
f b ( x).
α 180 α
π
рад ,
αрад
π
180
α 0
Sinα yα , Соsα xα ,
tgα
Sec
yα ,
xα
1 ,
xα
ctgα
С s сα
xα ,
yα
1 .
yα
1 rad 57 017 15 ; π 3,141592 . . .
Trigonometrik funksiyalarning choraklardagi ishoralari
Cosx Sinx tgx, ctgx
Asosiy trigonometrik ayniyatlar
Sin2 x Cos2 x 1. 4. tgx
Sinx .
Cosx
tgx ctgx 1. 5.
ctgx Cosx .
Sinx
3. 1 tg 2x
1
Cos2x
. 6. 1 ctg 2 x
1 .
Sin2x
sin(α β ) sinα cos β cosα sin β ;
cos(α β ) cosα cos β ∓ sinα sin β ;
tg(α β )
tgα tgβ ;
1 ∓ tgαtgβ
сtg(α β ) сtgαсtgβ ∓ 1 .
сtgα сtgβ
Ikkilangan va uchlangan burchaklar
sin 2x 2sin x cos x ; sin 2x 2sin x cos x ;
tg 2x 2tgx ;
1 tg 2 x
ctg 2x
ctg 2x 1
;
2ctgx
sin 3x 3sin x cos2 x sin3 x 3sin x 4sin3 x ;
cos 3x cos3 x 3cos x sin2 x 4cos3 x 3cos x ;
tg3x tgx tg 2x
1 tgxtg 2x
3tgx tg3x
1 3tg 2x .
Yig‘indini ko‘paytmaga keltirish
Sinx Siny 2Sin x y Cos x ∓ y .
2 2
Cosx Cosy 2Cos x y Cos x y .
2 2
Cosx Cosy 2Sin x y Sin x y .
2 2
Cosx Sinx
2 Sin π x 2 Cos π x .
4 4
Cosx Sinx
2 Cos π x 2 Sin π x .
4 4
pCosx qSinx rSin(z x) , r
, Sinz
p , Cosz q .
r r
tgx tgy Sin x y ,
CosxCosy
tgx ctgy Cos x y ,
CosxSiny
ctgx ctgy Sin x y .
SinxSiny
tgx ctgy Cos x y .
CosxSiny
Do'stlaringiz bilan baham: |