Microsoft Word Avtoreferat (Muhiddinov M. N. Tatu)


«Implementation and experimental



Download 0,88 Mb.
Pdf ko'rish
bet23/29
Sana25.02.2022
Hajmi0,88 Mb.
#463854
1   ...   19   20   21   22   23   24   25   26   ...   29
Bog'liq
tasvirlardagi obektlarni azhratish usullari va algoritmlarini ishlab chiqish

«Implementation and experimental 
results of objects extraction and recognition methods in images» 
presents 
object detection, extraction algorithms, text detection, recognition algorithms and 
its software as well as the results of comparison experiments and practical 
implementation. The proposed salient objects extraction and text recognition 
methods are implemented in C++, programming language using OpenCV library.
The all proposed methods are compared with other state-of-the-art alternate 
methods using most popular available datasets: salient objects detection method 
compared with other 12 alternate methods using MSRA 10k dataset; salient object 
extraction method compared with other 2 alternate methods using MSRA 10k 
dataset; text detection method compared with other 17 alternate methods using 
ICDAR 2015 and MSRA-TD500 datasets; text recognition method compared with 
other 7 alternate methods using ICDAR 2013 dataset. In addition, performed both 
quantitative and qualitative comparisons of the proposed methods with other 
methods. 
In qualitative comparison of salient objects detection and extraction, it has 
been determined the proposed methods effectively suppresses background regions 
and uniformly emphasizes foreground regions as well as extract salient objects 
with less amount of data about the saliency map without misclassifying them as 
background regions, and even detect multiple salient objects. Furthermore, text 
region effectively and accurately detected as well as Uzbek text correctly 
recognized in qualitative comparison of text detection and recognition.
 
In this chapter of the dissertation, in quantitative comparison, the standard 
evaluation metrics are used such as Precision (P), Recall (R), F-Measure (FM), 
Receiver Operating Characteristics (ROC), Area under ROC Curve (AUC) and 
Mean Absolute Error (MEA). Precision is the fraction of the detected salient pixel 
belonging to the salient objects in the ground truth, and recall corresponds to the 


31 
percentage of salient pixels correctly assigned. The PR curve is obtained by 
normalizing the saliency map to [0, 255], generating binary masks with a threshold 
varying from 0 to 255, and comparing the binary mask against the manually 
labeled ground truth. Precision and recall rates can be obtained as follows: 
=

(7) 
=

(8) 
where TDO denotes truly detected salient objects, ADO all detected objects, and 
GT manually labeled ground truth. F-Measure value which balanced measurements 
between mean of precision and recall rates. A higher F-Measure means a higher 
performance and it is defined as follows: 
=
(
)
×
×
(9) 
where 
= 0.3

The proposed text detection method obtain the most robust results in both 
ICDAR 2015 and MSRA-TD500 datasets with 84.7% per cent and 84% per cent F-
Measure respectively. Moreover, the proposed text recognition method achieves 
94.6% per cent recognition rate by leaving behind other methods. 
Developed salient objects extraction and its edge detection algorithms for 
tactile graphics and displays as well as the Uzbek language texts detection, 
recognition and pronunciation algorithms in images for speech synthesizer can be 
used in other information technologies sphere. 

Download 0,88 Mb.

Do'stlaringiz bilan baham:
1   ...   19   20   21   22   23   24   25   26   ...   29




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish