Data mining techniques applied in educational environments: Literature review
A. Villanueva, L.G. Moreno & M.J. Salinas
Digital Education Review - Number 33, June 2018- http://greav.ub.edu/der/
262
evaluation of learning sites.
Proceedings 3rd IEEE International Conference on Advanced
Technologies
, 360–361. https://doi.org/10.1109/ICALT.2003.1215123
Madhyastha, T., & Hunt, E. (2009). Mining Diagnostic Assessment Data for Concept Similarity.
JEDM - Journal of Educational Data Mining
,
1
(1), 72–91. https://doi.org/Similarity
Maimon, O., & Rokach, L. (2005).
Data Mining and Knowledge Discovery Handbook
.
Data Mining
and Knowledge Discovery Handbook
. https://doi.org/10.1007/0-387-25465-x_2
Markellou, P., Mousourouli, I., Spiros, S., & Tsakalidis, a. (2005). Using semantic web mining
technologies for personalized e-learning experiences.
Proceedings of the Web-Based
Education
, 461–826. Retrieved from http://www.hci.gr/files/461-826_Markellou.pdf
Martinez-maldonado, R., Yacef, K., & Kay, J. (2013). Data Mining in the Classroom : Discovering
Groups ’ Strategies at a Multi-tabletop Environment.
International Conference on Educational
Data Mining
, 121–128.
Mason, R., & Rennie, F. (2013).
E-learning and social networking handbook: Resources for higher
education.
Mayilvaganan, M., & Kalpanadevi, D. (2015). Cognitive Skill Analysis for Students through Problem
Solving Based on Data Mining Techniques.
Procedia - Procedia Computer Science
,
47
, 62–75.
https://doi.org/10.1016/j.procs.2015.03.184
Merceron, A., & Yacef, K. (2008). Interestingness Measures for Association Rules in Educational
Data.
Proceedings of the 1st International Conference on Educational Data Mining
, 57–66.
Retrieved from papers3://publication/uuid/E0EAD44B-49CB-44D3-BA64-E29F555E8470
Minaei-Bidgoli, B., Tan, P.-N. T. P.-N., & Punch, W. F. (2004). Mining interesting contrast rules for
a web-based educational system.
2004 International Conference on Machine Learning and
Applications, 2004. Proceedings.
https://doi.org/10.1109/ICMLA.2004.1383530
MINTIC. (2015). Panorama TIC | Publicado en marzo de 2015.
PanoramaTIC
.
Mor, E., & Minguillón, J. (2004). E-learning personalization based on itineraries and long-term
navigational behavior.
Proceedings of the 13th International World Wide Web Conference on
Alternate Track Papers Posters WWW Alt 04
, 264. https://doi.org/10.1145/1013367.1013427
Moucary, C. E., Khair, M., & Zakhem, W. (2011). Improving Student’s Performance Using Data
Clustering and Neural Networks in Foreign-Language Based Higher Education.
The Research
Bulletin of Jordan ACM
,
2
(3), 27–34.
Mugla, H. G. (2014). Modeling Student Performance in Higher Education Using Data Mining
Modeling Student Performance in Higher Education Using Data Mining, (February 2016).
https://doi.org/10.1007/978-3-319-02738-8
Nesbit, J. C., Xu, Y., Winne, P. H., & Zhou, M. (2008). Sequential pattern analysis software for
educational event data Data Mining Software for Educational Log Analysis.
Measuring
Behavior 2008
, 160.
Oladokun, V. O., Ph, D., Adebanjo, a T., & Sc, B. (2008). Predicting Students ’ Academic
Performance using Artificial Neural Network : A Case Study of an Engineering Course.
The
Pacific Journal of Science and Technology
,
9
(1), 72–79.
Ouyang, Y., & Zhu, M. (2008). eLORM : Learning Object Relationship Mining based Repository.
Online Information Review
,
32
, 254–265.
Pandey, U. K., & Pal, S. (2011). A Data Mining view on Class Room Teaching Language,
8
(2), 277–
282.
Pandey, U. K., & Pal, S. (2011). Data Mining: A prediction of performer or underperformer using
Do'stlaringiz bilan baham: |