Methods and guidelines for effective model calibration


APPENDIX A: THE MAXIMUM-LIKELIHOOD AND LEAST-SQUARES



Download 0,49 Mb.
Pdf ko'rish
bet46/55
Sana28.05.2022
Hajmi0,49 Mb.
#613965
1   ...   42   43   44   45   46   47   48   49   ...   55
Bog'liq
EffectiveCalibration WRIR98-4005

APPENDIX A: THE MAXIMUM-LIKELIHOOD AND LEAST-SQUARES 
OBJECTIVE FUNCTIONS
The maximum-likelihood objective function is developed by considering the random na-
ture of y, the observations. This random nature results from conceptualizing measurement error as 
random. If Y is the vector of jointly distributed random variables of which y is a realization, the 
joint probability distribution function (pdf), f
Y
(y), depends on the true model and true parameter 
values. For the purpose of estimating parameters for a given assumed model, consider the joint pdf 
conditioned on a particular set of parameter values, f
Y
(y|b). This joint pdf can be thought of as the 
probability that different sets of possible observations would occur given the parameter values b.
In parameter estimation, the elements of y are known and we would like to estimate b. A reason-
able requirement of the estimates is that they maximize the probability of obtaining the observa-
tions, y. This requirement is imposed by defining the objective function using the likelihood 
function, l(b|y), which is defined as:
l(b|y) = f
Y
(y|b).
(A1)
If the true errors are from a joint, normal distribution, the likelihood function equals (Brockwell 
and Davis, 1987, p. 247):
l(b|y) = 
,
(A2)
where, as in equation 1 and 2, 
e = y - y’,
y’ is a function of b, and 
ND is the number of observations.
Replacing V(
ε
) using equation C21 (see below), taking the natural log, and multiplying by -2 pro-
duces the maximum-likelihood objective function:
S’(b) = -2 ln(l(b|y)) = ND ln2
π
- ln
.
(A3)
Because of the multiplication by a negative number, the maximization problem becomes a mini-
mization problem, and the objective is to determine the parameter estimates that minimize equation 
A3. To include prior estimates of the parameters, e and 
ω
are augmented as described in Appendix 
B, ND is replaced by ND+NPR, and the determinant of A3 is expanded so that A3 can be expressed 
as:
S’(b) = (ND+NPR) ln2
π
+ (ND+NPR) ln 
σ

- ln |
ω
d
| - ln |
ω
p
| + 

(A4)
1
2
π
------
 
 
ND 2

V
ε
( )
1 2


{
1
2
---

e
T
(V(
ε ) )
1

e

exp
1
σ
2
------ 
ω
e
T
1
σ
2
------ 
ω




e
+
e
T
1
σ
2
------ 
ω




e


76
where 
ω
d
and 
ω
p
are the sections of the weight matrix applicable to dependent variable observa-
tions and prior estimates of the parameters, respectively.
For any assumed model, set of observations, and defined weight matrix used in the param-
eter-estimation procedure, 
ω
is approximated
and ND, 
σ
2
, and 
ω
are constant. Eliminating terms 
of equation A4 that do not depend on b and multiplying by 
σ
2
yields:
S(b) = e
T
ω
e.
(A5)
Thus, for the optimization process, the maximum-likelihood objective function equals the sum-of-
squares objective function (eq. 2).
The development of equation A5 from the maximum-likelihood objective function requires 
that the true errors be from a joint, normal distribution, a condition not required when the equation 
is derived in other ways.

Download 0,49 Mb.

Do'stlaringiz bilan baham:
1   ...   42   43   44   45   46   47   48   49   ...   55




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish