Membrane Gas Separation


Membranes: Porous Structures?



Download 4,39 Mb.
Pdf ko'rish
bet65/233
Sana13.04.2022
Hajmi4,39 Mb.
#549133
1   ...   61   62   63   64   65   66   67   68   ...   233
Bog'liq
206. Membrane Gas Separation

5.5
Membranes: Porous Structures? 
The available range of membrane materials includes polymeric, carbon, silica, zeolite and 
other ceramics, as well as composites. Each type of membrane can have a different porous 
structure, as illustrated in Figure 5.2 . Membranes can be thought of as having a fi xed 
(immovable) network of pores in which the gas molecule travels, with the exception of 
most polymeric membranes [28,44] . Polymeric membranes are composed of an amor-
phous mix of polymer chains whose interactions involve mostly van der Waals forces. 
However, some polymers reveal a behaviour that is consistent with the idea of existence 
of opened pores within their matrix. This is especially true for high free volume, high 


Modelling Gas Separation in Porous Membranes 
91
permeability polymers like poly(trimethylsilylpropyne), as has been proved by computer 
modelling, low activation energy of diffusion, negative activation energy of permeation, 
solubility controlled permeation in this and similar polyacetylenes
[10,25] 
(see also 
Chapters 2 and 3 of this book). Although polymeric membranes have often been viewed 
as non - porous, in the modelling framework discussed here it is convenient to consider 
them nonetheless as porous. Glassy polymers have pores that can be considered as 
‘ frozen ’ over short times scales, as demonstrated in Figure 5.3 a, while rubbery polymers 
have dynamic fl uctuating pores (or more correctly free volume elements) that move, 
shrink, expand and disappear, as illustrated in Figure 5.3 b [14] .
5.6
Transition State Theory (TST) 
The diffusion of molecules within porous networks similar to that of microporous silica 
and non - porous glassy polymers can be modelled within the framework of the so - called 
transition state theory [17,22,28,33,45] . A gas molecule bounces around in a reactant 
cavity eventually bouncing towards the transition state by which it transports through to 
the product cavity and therefore successfully makes a diffusive jump, as demonstrated in 
Figure 5.4 a. Within glassy polymers, see Figure 5.4 b, the transition state is a dynamical 
section that becomes available through polymer chain motions. Within microporous 
silica, see Figure 5.4 c, the transition state is a permanent pathway for the transport of the 
gas molecule. The transition state theory offers a method to express the rate of diffusion 
D (or diffusivity) within these porous networks in the following way:
Microporous glass
Carbon nanotubes
Zeolite
Carbon layers
Polymer 
Silica
Figure 5.2  Porous structure within various types of membranes [3,22,37] . Microporous 
glass fi gure from [22] , reprinted with permission of John Wiley & Sons, Inc. Silica fi gure from 
 [3] , reprinted with permission of Wiley - VCH Verlag GmbH & Co. KGaA. Carbon nanotubes 
fi gure reprinted with permission from Science, Aligned multiwalled carbon nanotube 
membranes, by B. J. Hinds, N. Chopra, T. Rantell, R. Andrews, V. Gavalas and L. G. Bachas, 
303, 62 – 65. Copyright (2004) American Association for the Advancement of Science.


92
Membrane Gas Separation
D
=
the probability that the molecule will travel towards a ttransition
the probability that the molecule will pas
g
ρ
( )
×
ss through the transition
the velocity of the molecule
E
ρ
( )
×
through the transition
the jump length from the react
u
( )
×
aant cavity to the product cavity
.
λ
( )
This formula
D
u
=
ρ ρ λ
g
E
provides some insight into the major factors contributing to the separation of particular 
molecules. If the transition state has the form of a narrow constriction then the smaller 
molecules are more likely to pass through and therefore have a higher rate of diffusion 
than their larger counterparts. On the other hand, if the transition state is wide enough for 
both molecules to freely pass through, then the velocity at which they travel may be the 
a) Glassy polymer
b) Rubbery polymer
Figure 5.3 Computer simulations performed by Greenfi eld and Theodorou [14] for free 
volume clusters before and after 10 
7
Monte Carlo steps within (a) glassy polymer and 
(b) rubbery polymer. Reprinted with permission from Macromolecules, Geometric analysis 
of diffusion pathways in glassy and melt atactic polypropylene by M. L. Greenfi eld and 
D. N. Theodorou, 26, 5461 – 5472. Copyright (1993) American Chemical Society


Modelling Gas Separation in Porous Membranes 
93
dominant factor in determining the rate of diffusion. Further, within glassy polymers the 
rate of diffusion could be dominated by the rate of polymer chain movements in the walls 
of free volume elements or closed pores which occasionally provide a transition pathway 
for the molecules.
product
cavity 
jump length (
λ
)
jump length 
λ
d
n
d
p
reactant
cavity
(a)
(b)
(c)
neck
(transition state) 
hole size 
Figure 5.4 Transition State Theory for diffusion in condensed media. (a) General 
representation of the transition state theory. (b) Diffusive jump in glassy polymer [17] . 
Reprinted from Journal of Membrane Science, 73 , E. Smit, M. H. V. Mulder, C. A. Smolders, 
H. Karrenbeld, J. van Eerden and D. Feil, Modelling of the diffusion of carbon dioxide in 
polyimide matrices by computer simulation, 247 – 257, Copyright (1992), with permission 
from Elsevier. (c) Diffusive jump in microporous silica, reprinted with permission from 
AIChE, Theory of gas diffusion and permeation in inorganic molecular - sieve membranes by 
A. B. Shelekhin, A. G. Dixon and Y. H. Ma, 41, 58 – 67, Copyright (1995) AIChE


94
Membrane Gas Separation

Download 4,39 Mb.

Do'stlaringiz bilan baham:
1   ...   61   62   63   64   65   66   67   68   ...   233




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish