TEOREMA. (Vil`son teoremasi). ๐ tub son uchun
(๐ โ 1)! + 1 โก 0(๐๐๐๐)
taqqoslama o`rinli.
ISBOTI. ๐ = 2 uchun teorema o`rinli. Agar ๐ > 2 bo`lsa,
(๐ฅ โ 1)(๐ฅ โ 2) โฆ (๐ฅ โ (๐ โ 1)) โ (๐ฅ๐โ1 โ 1) โก 0(๐๐๐๐)
taqqoslamani qarasak, uning darajasi ๐ โ 2 dan katta emas va u ๐ โ 1 ta yechimga ega. (yechim 1,2,โฆ,p-1 lardan iborat). Demak, 1-natijaga ko`ra, uning
barcha koeffitsientlari, jumladan uning ozod hadi (๐ โ 1)! + 1 ham ๐ ga bo`linadi, ya`ni (๐ โ 1) + 1 โก 0(๐๐๐๐)
MISOL. 1) 1 โ 2 โ 3 โ 4 โ 5 โ 6 + 1 โก 0(๐๐๐7)
2) 4! + 1 = 24 + 1 โก 0(๐๐๐5)
MISOL. 251๐ฅ54 + 63๐ฅ25 โ 7๐ฅ11 + 4๐ฅ3 + 2 โก 0(๐๐๐ 5) taqqoslamani soddalashtiring.
Yechish: berigan taqqoslamani soddalashtirish uchun taqqoslamalar xossalaridan va Eyler teoremasidan foyalanamiz:
251 โก 1(๐๐๐ 5);
63 โก 3(๐๐๐ 5);
7 โก 2(๐๐๐ 5);
4 โก 4(๐๐๐ 5);
2 โก 2(๐๐๐ 5).
๐(5) = 4 dan: ๐ฅ54 โก (๐ฅ4)13 โ ๐ฅ2 โก ๐ฅ2(๐๐๐ 5); ๐ฅ25 โก (๐ฅ4)6 โ ๐ฅ โก ๐ฅ(๐๐๐ 5);
๐ฅ11 โก (๐ฅ4)2 โ ๐ฅ3 โก ๐ฅ3(๐๐๐ 5).
Keltirilgan taqqoslamalar yordamida berilgan taqqoslamani soddalashtiramiz:
251๐ฅ54 + 63๐ฅ25 โ 7๐ฅ11 + 4๐ฅ3 + 2 โก ๐ฅ2 + 3๐ฅ โ 2๐ฅ3 + 4๐ฅ3 + 2 โก 2๐ฅ3 + ๐ฅ2 +
3๐ฅ + 2 โก 0 (๐๐๐ 5).
Sonning koโrsatkichi. Tub modul boโyicha indekslar. Ikki hadli taqoslamalar.
(๐, ๐) = 1 boโlganda, Eyler teoremasiga ko`ra,
๐๐(๐) โก 1(๐๐๐๐)
o`rinli.
TA`RIF. (๐, ๐) = 1 bo`lib
๐๐ฟ โก 1(๐๐๐๐)
taqqoslamani qanoatlantiruvchi eng kichik ๐ฟ son a sonning ๐ modul` bo`yicha ko`rsatkichi deyiladi.
TEOREMA. ๐๐พ โก 1(๐๐๐๐) bo`lishi uchun ๐พ sonning ๐ฟ ga bo`linishi zarur va etarli. (๐ฟ son โ ๐ sonning m modul` bo`yicha ko`rsatkichi).
Haqiqatan, ๐ ๐ฃ๐ ๐1 sonlar ๐พ va ๐พโฒ sonlarning ๐ฟ ga bo`lgandagi qoldiqlari bo`lsin, u holda qandaydir ๐ va ๐1 sonlar uchun
๐พ = ๐ฟ๐ + ๐ ๐ ๐พโฒ = ๐ฟ๐1 + ๐1
o`rinli bo`lib,
๐๐พ = (๐๐ฟ)๐ โ ๐๐ โก ๐๐(๐๐๐๐)
๐ ๐พ๐ = (๐ ๐ฟ) ๐1 โ
๐ ๐1 โก ๐ ๐1 (๐๐๐๐)
Demak, ๐๐พ โก ๐๐พ๐(๐๐๐๐) bo`lishi uchun
๐ ๐ โก ๐ ๐1 (๐๐๐๐ ) ya`ni
๐ = ๐ 1
bo`lishi zarur va etarli.
Agar ๐พ โฒ = 0 desak,
๐พ โก ๐พ โฒ(๐๐๐๐ฟ)
dan ๐พ ning ๐ฟ ga bo`linishi kelib chiqadi.
NATIJA. ๐๐ โก ๐๐ก(๐๐๐๐) taqqoslamaning o`rinli bo`lishi uchun ๐ โ
๐ก ning ๐ฟ ga boโlinishi zarur va etarli.
NATIJA. 1, ๐, ๐2, โฆ , ๐๐ฟโ1 sonlar m modul` bo`yicha o`zaro taqqoslanmaydi.
TEOREMA. ๐ ๐ sonning ๐ modul` bo`yicha ko`rsatkichi ๐ฟ/(๐, ๐ฟ) ga
teng.
MISOL. 1) 2 son 7 modul` bo`yicha, 3 ko`rsatkichga tegishli, ya`ni
2 3 โก 1(๐๐๐7) demak, 2 2 = 4 ham 7 modul` bo`yicha 3 ko`rsatkichga tegishli,
ya`ni 43 โก (23)2 โก 1(๐๐๐7) chunki, (2,3) = 1 ๐ ๐ฟ
(๐,๐ฟ)
= ๐ฟ
2) 3 soni 7 modul bo`yicha 6 ko`rstgichga tegishli, ya`ni
3 6 โก (3 2)3 โก 2 3 โก 1 (๐๐๐7 )
34 = 81 esa ๐ฟ
(๐,๐ฟ)
(โ1)4 โก 1(๐๐๐7)
= 6
(4,6)
= 6 = 3 ko`rsatgichga tegishli, ya`ni 813 = (34)3 โก
2
NATIJA. Agar (๐, ๐ฟ) = 1 bo`lsa, ๐ ๐ sonning ๐ modul` bo`yicha ko`rsatkichi ๐ฟ ga teng.
NATIJA. 1, ๐, โฆ , ๐ ๐ฟโ1 sonlar orasida ๐(๐ฟ) ta m modul` bilan o`zaro taqqoslanmaydigan ko`rsatkichi ๐ฟ ga teng bo`lgan sonlar mavjud.
MISOL. 7 chegirmalar sinfining 43 modul` bo`yicha ko`rsatkichini va shu modul` bo`yicha 7 sinfning ko`rsatkichiga teng bo`lgan barcha chegirmalar sinfini topamiz.
Ma`lumki, ixtiyoriy sinfning ko`rsatkichi ๐ (๐ ) = ๐ (43 ) = 42 ning bo`luvchisi bo`ladi. 42 ning natural bo`luvchilari
1,2,3,6,7,14,21,42 bo`ladi.
7 ni ketma ket shu darajalarga ko`tarib, 1 bilan taqqoslanuvchi sonni topamiz.
71 โก 7(๐๐๐43)
7 2 โก 6 (๐๐๐43 )
7 3 โก (โ1 )(๐๐๐43 )
7 6 โก 1 (๐๐๐43 )
Demak, 7 ning 43 modul` bo`yicha ko`rsatkichi 6 ga teng: ๐ฟ = 6
Endi 43 modul` bo`yicha chegirmalarning to`la sistemasidagi sinflarning qaysilari 6 ko`rsatgichga tegishli ekanini topamiz.
Buning uchun 0,1,2,3,4,5 (1) sonlarni tanlab olamiz va ular orasidan
6 bilan oโzaro tub boโlgan sonlarni ajratib olamiz. 6 ko`rsatkichga 43 modul` bo`yicha tegishli sonlar (sinflar)
๐ฅ 6 โก 1(๐๐๐43)
taqqoslamani qanoatlantirishi kerak, ya`ni shu taqqoslamaning yechimlarigina 43 modul` bo`yicha 6 ko`rsatkichiga tegishli bo`lishi mumkin. Uning yechimlari esa 43 modul` bo`yicha
7 0, 7 1, 7 2, 7 3, 7 4, 7 5
sonlari orasida bo`ladi. (1) ketma ketlikda 6 bilan o`zaro tub sonlar 1,5 bo`lgani uchun
nitekshiramiz.
71, 75
71 โก 7(๐๐๐43)
75 โก 72 โ
72 โ
7 โก 6 โ
6 โ
7 โก 252 โก 37(๐๐๐43)
Demak, 7 ฬ
๐ 3 ฬ
ฬ
ฬ
7 ฬ
sinflar 43 modul` bo`yicha 6 ko`rsatgichga tegishli.
TA`RIF. Agar a sonning m modul` bo`yicha ko`rsatkichi ๐ (๐ ) ga teng bo`lsa a ga m modul` bo`yicha boshlang`ich ildiz deyiladi.
TA`RIF. Agar g son p tub modul` bo`yicha boshlang`ich ildiz bo`lib,
(๐, ๐ ) = 1 bo`lganda
๐ โก ๐๐พ(๐๐๐๐) (2)
taqqoslama o`rinli bo`lsa, ๐พ โฅ 0 son a sonning p modul` bo`yicha g asosga nisbatan indeksi deyiladi va uni
kabi belgilanadi.
๐พ = ๐๐๐๐๐
Bu ta`rifdan foydalanib, (2) ni
๐ โก ๐๐๐๐๐(๐๐๐๐)
kabi yozish mumkin.
Logarifmik ladvallar mavjud boโlganidek, ixtiyoriy p tub modul boโyicha indekslar jadvalini tuzish mukin. Indekslarning asosi qilib p sonning birorta bshlangโich ildizi olinadi. Har bir jadval quyidagi 2 ta qimdan iborat boโladi:
Berilgan n son boโyicha I indeksni topish
Berilgan I indeks boโyicha n sonni topish.
Biror p modul boโyicha indekslar jadvalini tuzish uchun avvalo p modul boโyicha g boshlangโich ildizlarni topish lozim. Songra ๐ 0, ๐ 1, โฆ , ๐ ๐โ2 darajalar p modul boโyicha eng kichik musbat chegirmalarga almashtiriladi. Masalan p=11 modul boโyicha indekslar va ulara mos sonlar jadvalini tuzaylik. Bevosita hisoblash
usuli bilan 2, 6, 7, 8 lar 11 modul boโyicha boshlangโich ildiz ekaniga ishonch hosil qilamiz.
Haqiqatan, ๐(11) = 10 boโlgni uchun
2 โก 2 (๐๐๐ 11), 23 โก 8(๐๐๐ 11), 24 โก 5(๐๐๐ 11),
22 โก 4 (๐๐๐ 11), 25 โก 10 (๐๐๐ 11),
210 โก 1 (๐๐๐ 11), 29 โก 6(๐๐๐ 11), 26 โก 9 (๐๐๐ 11),
27 โก 7 (๐๐๐ 11), 28 โก 3 (๐๐๐ 11)
larga asosan 2 boshlangโich ildizir.
6 โก 6 (๐๐๐ 11), 62 โก 3 (๐๐๐ 11), 63 โก 7(๐๐๐ 11), 64 โก 9 (๐๐๐ 11),
65 โก 10 (๐๐๐ 11), 610 โก 1 (๐๐๐ 11)
Demak, 11 modul boโyicha 6 ham boshlangโich ildiz ekan. Endi asos 2 boโlganda quyidagi jadvallarni tuzamiz:
n
|
1
|
2
|
3
|
4
|
5
|
6
|
7
|
8
|
9
|
10
|
I
|
10
|
1
|
8
|
2
|
4
|
9
|
7
|
3
|
6
|
5
|
I
|
1
|
2
|
3
|
4
|
5
|
6
|
7
|
8
|
9
|
10
|
n
|
2
|
4
|
8
|
5
|
10
|
9
|
7
|
3
|
6
|
1
|
Birinchi jadvalga asosan, son berilsa, indeks topiladi, ikkinhi jadvalga asosan esa indeksga qarab son topiladi.
๐ = 43 modul boโyicha 3, 5, 12, 18, 19, 20, 26, 28, 30, 33, 34 sonlar boshlangโich ildizdir. ๐ = 28 boโlganda quyidagi jadvallarga ega boโlamiz:
n
|
0
|
1
|
2
|
3
|
4
|
5
|
6
|
7
|
8
|
9
|
0
|
|
42
|
39
|
17
|
36
|
5
|
4
|
7
|
33
|
34
|
1
|
2
|
6
|
11
|
40
|
4
|
22
|
30
|
16
|
31
|
29
|
2
|
41
|
24
|
3
|
20
|
8
|
10
|
7
|
9
|
1
|
25
|
3
|
19
|
32
|
27
|
23
|
13
|
12
|
28
|
35
|
26
|
5
|
4
|
38
|
18
|
21
|
|
|
|
|
|
|
|
I
|
0
|
1
|
2
|
3
|
4
|
5
|
6
|
7
|
8
|
9
|
0
|
|
28
|
10
|
22
|
14
|
5
|
11
|
7
|
24
|
27
|
1
|
25
|
12
|
35
|
34
|
6
|
39
|
17
|
3
|
41
|
30
|
2
|
23
|
42
|
15
|
33
|
21
|
29
|
38
|
32
|
6
|
14
|
3
|
16
|
18
|
31
|
8
|
9
|
37
|
4
|
26
|
40
|
2
|
Bu jadvallardagi satrlar va ustunlar mos ravishda son (indeks) nng oโnlik va birlik xonaini bildirib, ularning kesishgan joyida izlanayotgan indeks (son) turadi.
Misol. 43 modul boโyicha 37 sonning indeksini toping.
Birinchi jadvaldagi 3-satr va 7-ustunning kesishgan joyida 35 soni joylashgan. Demak, ๐๐๐4337 = 35. Endi aksincha 43 modul boโyicha indeksi 18 ga teng sonni toping. ๐๐๐ ๐ โก 18 (๐๐๐ 43) . ikkinchi jadvaga asosan birinchi satr va 8-ustunning kesishgan joyida 41 soni mos keladi. Demak, n=41.
Agar izlanayotgan son (yoki indeks) jadvaldagi eng katta sondan ham katta boโlsa, bu son qaralayotgan p yoki p-1 modul boโyicha eng kichik musbat chegirma bilan almashtirib olinadi.
Boshlangโich ildiz mavjud boโlgan har qanday modul boโyicha indekslar jadvalini tuzish mumkin. Chuki bunday holda ham boshlangโich ildizning darajalari m modul boโyicha chegirmalarning keltirilan sistemasini tashkil qiladi.
Do'stlaringiz bilan baham: |