Mavzu: mulohazalar hisobida yechilish, zidsizlik, to’liqlilik va erkinlik muomolari


NAZARIYANING ZIDSIZLIK VA TO’LIQLILIK MUAMMOLARI



Download 244,39 Kb.
bet7/11
Sana14.05.2020
Hajmi244,39 Kb.
#51555
1   2   3   4   5   6   7   8   9   10   11
Bog'liq
BAHADIROVA SABOHAN Mulohazalar hisobida yechilish , zidsizlik, to’liqlilik va erkinlik muomolari

2.3. NAZARIYANING ZIDSIZLIK VA TO’LIQLILIK MUAMMOLARI

Zidsiz nazariya. Ziddiyatga ega bo ‘lgan nazariya. Zidsizlik muammosi.

Absolyut to’liq nazariya. Tor mа’noda to‘liq nazariya. To'liqlilik muammosi.

Yechilish muammosi. Birinchi tartibli predikatlar. Predikatlar hisobi. Predikatlar hisobining zidsizligi.

ZIDSIZLIK MUAMMOSI.

1- ta’rif. Agar T nazariyada shunday S mulohaza topilib, o’zining inkori S bilan birga teorema bo ‘lsa, u holda T ziddiyatga ega bo‘lgan nazariya deb ataladi. Aks holda T zidsiz nazariya deyiladi.

Agar T nazariyada S mulohaza topilib, u o‘zining inkori S bilan birga teorema bo’lmasa, shunda va faqat shundagina u zidsiz nazariya bo‘ladi.


    1. nazariyada keltirib chiqarish qoidasining biri sifatida xulosa qoidasi mavjud bo’lganidan, ziddiyatga ega bo‘lgan nazariyaning istalgan mulohazasi teorema bo’ladi. Haqiqatan ham, T nazariyaning istalgan A mulohazasi uchun S —» (S —> A ) ifoda teorema bo’ladi, chunki bu mulohaza S —> (S —> A ) tavtalogiyadir. Bu yerda S va S ning teorema ekanligini hisobga olgan holda ikki marta xulosa qoidasidan foydalanib, A teoremadir degan xulosaga kelamiz.

Aksiomatik nazariyalarda zidsizlik muammosini ko‘p hollarda model tushunchasi orqali yechish mumkin. Haqiqatan ham, agar T nazariya ziddiyatga ega bo‘lsa, u holda uning modeli ham ziddiyatga ega bo’ladi, chunki nazariyaning bir-biriga qarama-qarshi bo‘lgan juft teoremalari model holida bir-biriga qarama-qarshi bo‘lgan mulohazaga aylanadi. Demak, nazariya zidsiz bo’lishi uchun uning ziddiyatdan holi bo’lgan modeli mavjudligini ko‘rsatish kerak. Mulohazalar hisobining zidsizligini xuddi shu sxema orqali isbot qilgan edik.

Agar T nazariya uchun shunday interpretatsiyani topish mumkin bo’lsaki, uning interpretasiyasi chekli to‘plamdan iborat bo‘lsa, u holda bu interpretatsiyada ziddiyat mavjud emasligi masalasini yechish to‘g‘ridan-to‘g‘ri shu chekli to‘plamni ko‘rish bilan hal bo’ladi.

Masalan, bir elementli to‘plam a elementga ega bo’lsin. Agar bu to‘plamda a -a —a amali aniqlangan bo’lsa, u holda u ziddiyatga ega bo’lmagan guruh nazariyasining modeli bo’ladi. Demak, guruh nazariyasi zidsizdir. Ammo, ko‘pincha modelning zidsizligini isbotlash ancha murakkab fikr yuritishni talab qiladi. Bu, ayniqsa, T nazariya faqat cheksiz modellarga ega bo’lgan hollarda ko'proq yuz beradi.

Masalan, agar Evklid geometriyasining tushunchalari Lobachevskiy1 geometriyasining interpretatsiyasi sifatida foydalanilsa, u holda Lobachevskiy geometriyasining zidsizligi masalasini Evklid geometriyasining zidsizligi masalasiga keltirish mumkin.

Shuni ta’kidlash kerakki, Evklid geometriyasining zidsizligi va haqiqiy sonlar nazariyasining zidsizligi hozirgacha isbot qilingan emas.


Download 244,39 Kb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8   9   10   11




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish